An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles
Tomás Vetrík
Discussiones Mathematicae Graph Theory, Tome 28 (2008), p. 91-96 / Harvested from The Polish Digital Mathematics Library

We derive an upper bound on the number of vertices in graphs of diameter 3 and given degree arising from Abelian lifts of dipoles with loops and multiple edges.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:270748
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1393,
     author = {Tom\'as Vetr\'\i k},
     title = {An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {28},
     year = {2008},
     pages = {91-96},
     zbl = {1221.05214},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1393}
}
Tomás Vetrík. An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 91-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1393/

[000] [1] B.D. McKay, M. Miller and J. Sirán, A note on large graphs of diameter two and given maximum degree, J. Combin. Theory (B) 74 (1998) 110-118, doi: 10.1006/jctb.1998.1828. | Zbl 0911.05031

[001] [2] J. Siagiová, A Moore-like bound for graphs of diameter 2 and given degree, obtained as Abelian lifts of dipoles, Acta Math. Univ. Comenianae 71 (2002) 157-161. | Zbl 1046.05023

[002] [3] J. Siagiová, A note on the McKay-Miller-Sirán graphs, J. Combin. Theory (B) 81 (2001) 205-208, doi: 10.1006/jctb.2000.2006. | Zbl 1024.05039