For a graph G = (V,E), a set S ⊆ V(G) is a total dominating set if it is dominating and both ⟨S⟩ has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V(G) is a total restrained dominating set if it is total dominating and ⟨V(G)-S⟩ has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. We characterize all trees for which total domination and total restrained domination numbers are the same.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1391, author = {Xue-Gang Chen and Wai Chee Shiu and Hong-Yu Chen}, title = {Trees with equal total domination and total restrained domination numbers}, journal = {Discussiones Mathematicae Graph Theory}, volume = {28}, year = {2008}, pages = {59-66}, zbl = {1169.05359}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1391} }
Xue-Gang Chen; Wai Chee Shiu; Hong-Yu Chen. Trees with equal total domination and total restrained domination numbers. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 59-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1391/
[000] [1] S. Arumugam and J. Paulraj Joseph, On graphs with equal domination and connected domination numbers, Discrete Math. 206 (1999) 45-49, doi: 10.1016/S0012-365X(98)00390-2. | Zbl 0933.05114
[001] [2] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Marcus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69, doi: 10.1016/S0012-365X(99)00016-3. | Zbl 1114.05303
[002] [3] F. Harary and M. Livingston, Characterization of tree with equal domination and independent domination numbers, Congr. Numer. 55 (1986) 121-150. | Zbl 0647.05020
[003] [4] D. Ma, X. Chen and L. Sun, On total restrained domination in graphs, Czechoslovak Math. J. 55 (2005) 165-173, doi: 10.1007/s10587-005-0012-2. | Zbl 1081.05086
[004] [5] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi and L.R. Markus, Restrained domination in trees, Discrete Math. 211 (2000) 1-9, doi: 10.1016/S0012-365X(99)00036-9. | Zbl 0947.05057
[005] [6] E.J. Cockayne, C.M. Mynhardt and B. Yu, Total dominating functions in trees: minimality and convexity, J. Graph Theory 19 (1995) 83-92, doi: 10.1002/jgt.3190190109. | Zbl 0819.05035