Recognizable colorings of graphs
Gary Chartrand ; Linda Lesniak ; Donald W. VanderJagt ; Ping Zhang
Discussiones Mathematicae Graph Theory, Tome 28 (2008), p. 35-57 / Harvested from The Polish Digital Mathematics Library

Let G be a connected graph and let c:V(G) → 1,2,...,k be a coloring of the vertices of G for some positive integer k (where adjacent vertices may be colored the same). The color code of a vertex v of G (with respect to c) is the ordered (k+1)-tuple code(v) = (a₀,a₁,...,aₖ) where a₀ is the color assigned to v and for 1 ≤ i ≤ k, ai is the number of vertices adjacent to v that are colored i. The coloring c is called recognizable if distinct vertices have distinct color codes and the recognition number rn(G) of G is the minimum positive integer k for which G has a recognizable k-coloring. Recognition numbers of complete multipartite graphs are determined and characterizations of connected graphs of order n having recognition numbers n or n-1 are established. It is shown that for each pair k,n of integers with 2 ≤ k ≤ n, there exists a connected graph of order n having recognition number k. Recognition numbers of cycles, paths, and trees are investigated.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:270473
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1390,
     author = {Gary Chartrand and Linda Lesniak and Donald W. VanderJagt and Ping Zhang},
     title = {Recognizable colorings of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {28},
     year = {2008},
     pages = {35-57},
     zbl = {1235.05049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1390}
}
Gary Chartrand; Linda Lesniak; Donald W. VanderJagt; Ping Zhang. Recognizable colorings of graphs. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 35-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1390/

[000] [1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244, doi: 10.1016/j.jctb.2005.01.001. | Zbl 1074.05031

[001] [2] M. Aigner and E. Triesch, Irregular assignments and two problems á la Ringel, in: Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn, eds. (Physica, Heidelberg, 1990) 29-36.

[002] [3] M. Aigner, E. Triesch and Z. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Combinatorics' 90 (Elsevier Science Pub., New York, 1992) 1-9.

[003] [4] P.N. Balister, E. Gyori, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250, doi: 10.1137/S0895480102414107. | Zbl 1189.05056

[004] [5] A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129-140 | Zbl 0836.05029

[005] [6] A.C. Burris, The irregular coloring number of a tree, Discrete Math. 141 (1995) 279-283, doi: 10.1016/0012-365X(93)E0225-S. | Zbl 0829.05027

[006] [7] G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13-32. | Zbl 1102.05020

[007] [8] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congress. Numer. 64 (1988) 197-210.

[008] [9] G. Chartrand and L. Lesniak, Graphs & Digraphs: Fourth Edition (Chapman & Hall/CRC, Boca Raton, FL, 2005).

[009] [10] H. Escuadro, F. Okamoto and P. Zhang, A three-color problem in graph theory, Bull. Inst. Combin. Appl., to appear. | Zbl 1146.05022

[010] [11] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: Graphs and Applications (Wiley, New York, 1985) 147-162. | Zbl 0562.05023

[011] [12] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157, doi: 10.1016/j.jctb.2003.12.001. | Zbl 1042.05045