If D = (V,A) is a digraph, its competition hypergraph (D) has vertex set V and e ⊆ V is an edge of (D) iff |e| ≥ 2 and there is a vertex v ∈ V, such that . We give characterizations of (D) in case of hamiltonian digraphs D and, more general, of digraphs D having a τ-cycle factor. The results are closely related to the corresponding investigations for competition graphs in Fraughnaugh et al. [4] and Guichard [6].
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1389, author = {Martin Sonntag and Hanns-Martin Teichert}, title = {Competition hypergraphs of digraphs with certain properties II. Hamiltonicity}, journal = {Discussiones Mathematicae Graph Theory}, volume = {28}, year = {2008}, pages = {23-34}, zbl = {1166.05007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1389} }
Martin Sonntag; Hanns-Martin Teichert. Competition hypergraphs of digraphs with certain properties II. Hamiltonicity. Discussiones Mathematicae Graph Theory, Tome 28 (2008) pp. 23-34. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1389/
[000] [1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001). | Zbl 0958.05002
[001] [2] J.E. Cohen, Interval graphs and food webs: a finding and a problem (Rand Corporation Document 17696-PR, Santa Monica, CA, 1968).
[002] [3] R.D. Dutton and R.C. Brigham, A characterization of competition graphs, Discrete Appl. Math. 6 (1983) 315-317, doi: 10.1016/0166-218X(83)90085-9. | Zbl 0521.05057
[003] [4] K.F. Fraughnaugh, J.R. Lundgren, S.K. Merz, J.S. Maybee and N.J. Pullman, Competition graphs of strongly connected and hamiltonian digraphs, SIAM J. Discrete Math. 8 (1995) 179-185, doi: 10.1137/S0895480191197234. | Zbl 0830.05035
[004] [5] H.J. Greenberg, J.R. Lundgren and J.S. Maybee, Inverting graphs of rectangular matrices, Discrete Appl. Math. 8 (1984) 255-265, doi: 10.1016/0166-218X(84)90123-9. | Zbl 0545.05060
[005] [6] D.R. Guichard, Competition graphs of hamiltonian digraphs, SIAM J. Discrete Math. 11 (1998) 128-134, doi: 10.1137/S089548019629735X. | Zbl 0910.05030
[006] [7] P. Hall, On representation of subsets, J. London Math. Soc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26. | Zbl 0010.34503
[007] [8] S.R. Kim, The competition number and its variants, in: J. Gimbel, J.W. Kennedy and L.V. Quintas (eds.), Quo vadis, graph theory?, Ann. of Discrete Math. 55 (1993) 313-326.
[008] [9] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs and niche graphs, in: F. Roberts (ed.), Applications of combinatorics and graph theory to the biological and social sciences, IMA 17 (Springer, New York, 1989) 221-243.
[009] [10] J.R. Lundgren and J.S. Maybee, A characterization of graphs of competition number m, Discrete Appl. Math. 6 (1983) 319-322, doi: 10.1016/0166-218X(83)90086-0. | Zbl 0521.05058
[010] [11] F.S. Roberts, Competition graphs and phylogeny graphs, in: L. Lovasz (ed.), Graph theory and combinatorial biology; Proc. Int. Colloqu. Balatonlelle (Hungary) 1996, Bolyai Soc. Math. Studies 7 (Budapest, 1999) 333-362. | Zbl 0924.05032
[011] [12] F.S. Roberts and J.E. Steif, A characterization of competition graphs of arbitrary digraphs, Discrete Appl. Math. 6 (1983) 323-326, doi: 10.1016/0166-218X(83)90087-2. | Zbl 0521.05059
[012] [13] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329, doi: 10.1016/j.dam.2004.02.010. | Zbl 1056.05103