A graph is called magic (supermagic) if it admits a labelling of the edges by pairwise different (and consecutive) positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In the paper we prove that any balanced bipartite graph with minimum degree greater than |V(G)|/4 ≥ 2 is magic. A similar result is presented for supermagic regular bipartite graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1384, author = {Jaroslav Ivanco}, title = {Magic and supermagic dense bipartite graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {27}, year = {2007}, pages = {583-591}, zbl = {1142.05071}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1384} }
Jaroslav Ivanco. Magic and supermagic dense bipartite graphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 583-591. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1384/
[000] [1] A. Czygrinow and H.A. Kierstead, 2-factors in dense bipartite graphs, Discrete Math. 257 (2002) 357-369, doi: 10.1016/S0012-365X(02)00435-1. | Zbl 1008.05119
[001] [2] M. Doob, Characterizations of regular magic graphs, J. Combin. Theory (B) 25 (1978) 94-104, doi: 10.1016/S0095-8956(78)80013-6. | Zbl 0384.05054
[002] [3] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics #DS6 36 (2003). | Zbl 0953.05067
[003] [4] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Inc., San Diego, 1990). | Zbl 0703.05001
[004] [5] J. Ivanco, On supermagic regular graphs, Mathematica Bohemica 125 (2000) 99-114. | Zbl 0963.05121
[005] [6] J. Ivanco, Z. Lastivková and A. Semanicová, On magic and supermagic line graphs, Mathematica Bohemica 129 (2004) 33-42.
[006] [7] R.H. Jeurissen, Magic graphs, a characterization, Europ. J. Combin. 9 (1988) 363-368. | Zbl 0657.05065
[007] [8] S. Jezný and M. Trenkler, Characterization of magic graphs, Czechoslovak Math. J. 33 (1983) 435-438. | Zbl 0571.05030
[008] [9] J. Moon and L. Moser, On Hamiltonian bipartite graphs, Isr. J. Math. 1 (1963) 163-165, doi: 10.1007/BF02759704. | Zbl 0119.38806
[009] [10] J. Sedlácek, On magic graphs, Math. Slovaca 26 (1976) 329-335. | Zbl 0348.05114
[010] [11] J. Sedlácek, Problem 27, in: Theory of Graphs and Its Applications, Proc. Symp. Smolenice (Praha, 1963) 163-164.
[011] [12] B.M. Stewart, Magic graphs, Canad. J. Math. 18 (1966) 1031-1059, doi: 10.4153/CJM-1966-104-7. | Zbl 0149.21401
[012] [13] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967) 427-438, doi: 10.4153/CJM-1967-035-9. | Zbl 0162.27801