A proof of the crossing number of K3,n in a surface
Pak Tung Ho
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 549-551 / Harvested from The Polish Digital Mathematics Library

In this note we give a simple proof of a result of Richter and Siran by basic counting method, which says that the crossing number of K3,n in a surface with Euler genus ε is ⎣n/(2ε+2)⎦ n - (ε+1)(1+⎣n/(2ε+2)⎦).

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270141
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1379,
     author = {Pak Tung Ho},
     title = {A proof of the crossing number of $K\_{3,n}$ in a surface},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {549-551},
     zbl = {1142.05018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1379}
}
Pak Tung Ho. A proof of the crossing number of $K_{3,n}$ in a surface. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 549-551. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1379/

[000] [1] R.K. Guy and T.A. Jenkyns, The toroidal crossing number of Km,n, J. Combin. Theory 6 (1969) 235-250, doi: 10.1016/S0021-9800(69)80084-0. | Zbl 0176.22303

[001] [2] R.B. Richter and J. Siran, The crossing number of K3,n in a surface, J. Graph Theory 21 (1996) 51-54, doi: 10.1002/(SICI)1097-0118(199601)21:1<51::AID-JGT7>3.0.CO;2-L | Zbl 0838.05033

[002] [3] G. Ringel, Das Geschlecht des vollständigen paaren Graphen, Abh. Math. Sem. Univ. Hamburg 28 (1965) 139-150, doi: 10.1007/BF02993245. | Zbl 0132.21203

[003] [4] G. Ringel, Der vollständige paare Graph auf nichtorientierbaren Flächen, J. Reine Angew. Math. 220 (1965) 88-93, doi: 10.1515/crll.1965.220.88. | Zbl 0132.21204