A graph G is called a prism fixer if γ(G×K₂) = γ(G), where γ(G) denotes the domination number of G. A symmetric γ-set of G is a minimum dominating set D which admits a partition D = D₁∪ D₂ such that , i,j = 1,2, i ≠ j. It is known that G is a prism fixer if and only if G has a symmetric γ-set. Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004), 389-402] conjectured that if G is a connected, bipartite graph such that V(G) can be partitioned into symmetric γ-sets, then G ≅ C₄ or G can be obtained from by removing the edges of t vertex-disjoint 4-cycles. We construct a counterexample to this conjecture and prove an alternative result on the structure of such bipartite graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1377, author = {Richard G. Gibson and Christina M. Mynhardt}, title = {Counterexample to a conjecture on the structure of bipartite partitionable graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {27}, year = {2007}, pages = {527-540}, zbl = {1142.05059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1377} }
Richard G. Gibson; Christina M. Mynhardt. Counterexample to a conjecture on the structure of bipartite partitionable graphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 527-540. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1377/
[000] [1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: R.D. Ringeisen and F.S. Roberts, eds, Applications of Discrete Mathematics 189-199 (SIAM, Philadelphia, PA, 1988). | Zbl 0664.05027
[001] [2] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303-318, doi: 10.7151/dmgt.1233. | Zbl 1064.05111
[002] [3] G. Chartrand and L. Leśniak, Graphs and Digraphs, Third Edition (Chapman & Hall, London, 1996). | Zbl 0890.05001
[003] [4] B.L. Hartnell and D.F. Rall, On Vizing's conjecture, Congr. Numer. 82 (1991) 87-96. | Zbl 0764.05092
[004] [5] B.L. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389-402, doi: 10.7151/dmgt.1238. | Zbl 1063.05107
[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[006] [7] C.M. Mynhardt and Zhixia Xu, Domination in prisms of graphs: Universal fixers, Utilitas Math., to appear. | Zbl 1284.05199
[007] [8] P.R.J. Östergå rd and W.D. Weakley, Classification of binary covering codes, J. Combin. Des. 8 (2000) 391-401, doi: 10.1002/1520-6610(2000)8:6<391::AID-JCD1>3.0.CO;2-R | Zbl 0989.94037
[008] [9] M. Schurch, Domination Parameters for Prisms of Graphs (Master's thesis, University of Victoria, 2005).
[009] [10] C.B. Smart and P.J. Slater, Complexity results for closed neighborhood order parameters, Congr. Numer. 112 (1995) 83-96. | Zbl 0895.05060
[010] [11] V.G. Vizing, Some unsolved problems in graph theory, Uspehi Mat. Nauk 23 (1968) 117-134. | Zbl 0177.52301