Counterexample to a conjecture on the structure of bipartite partitionable graphs
Richard G. Gibson ; Christina M. Mynhardt
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 527-540 / Harvested from The Polish Digital Mathematics Library

A graph G is called a prism fixer if γ(G×K₂) = γ(G), where γ(G) denotes the domination number of G. A symmetric γ-set of G is a minimum dominating set D which admits a partition D = D₁∪ D₂ such that V(G)-N[Di]=Dj, i,j = 1,2, i ≠ j. It is known that G is a prism fixer if and only if G has a symmetric γ-set. Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004), 389-402] conjectured that if G is a connected, bipartite graph such that V(G) can be partitioned into symmetric γ-sets, then G ≅ C₄ or G can be obtained from K2t,2t by removing the edges of t vertex-disjoint 4-cycles. We construct a counterexample to this conjecture and prove an alternative result on the structure of such bipartite graphs.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270301
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1377,
     author = {Richard G. Gibson and Christina M. Mynhardt},
     title = {Counterexample to a conjecture on the structure of bipartite partitionable graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {527-540},
     zbl = {1142.05059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1377}
}
Richard G. Gibson; Christina M. Mynhardt. Counterexample to a conjecture on the structure of bipartite partitionable graphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 527-540. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1377/

[000] [1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: R.D. Ringeisen and F.S. Roberts, eds, Applications of Discrete Mathematics 189-199 (SIAM, Philadelphia, PA, 1988). | Zbl 0664.05027

[001] [2] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303-318, doi: 10.7151/dmgt.1233. | Zbl 1064.05111

[002] [3] G. Chartrand and L. Leśniak, Graphs and Digraphs, Third Edition (Chapman & Hall, London, 1996). | Zbl 0890.05001

[003] [4] B.L. Hartnell and D.F. Rall, On Vizing's conjecture, Congr. Numer. 82 (1991) 87-96. | Zbl 0764.05092

[004] [5] B.L. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389-402, doi: 10.7151/dmgt.1238. | Zbl 1063.05107

[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002

[006] [7] C.M. Mynhardt and Zhixia Xu, Domination in prisms of graphs: Universal fixers, Utilitas Math., to appear. | Zbl 1284.05199

[007] [8] P.R.J. Östergå rd and W.D. Weakley, Classification of binary covering codes, J. Combin. Des. 8 (2000) 391-401, doi: 10.1002/1520-6610(2000)8:6<391::AID-JCD1>3.0.CO;2-R | Zbl 0989.94037

[008] [9] M. Schurch, Domination Parameters for Prisms of Graphs (Master's thesis, University of Victoria, 2005).

[009] [10] C.B. Smart and P.J. Slater, Complexity results for closed neighborhood order parameters, Congr. Numer. 112 (1995) 83-96. | Zbl 0895.05060

[010] [11] V.G. Vizing, Some unsolved problems in graph theory, Uspehi Mat. Nauk 23 (1968) 117-134. | Zbl 0177.52301