The structure and existence of 2-factors in iterated line graphs
Michael Ferrara ; Ronald J. Gould ; Stephen G. Hartke
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 507-526 / Harvested from The Polish Digital Mathematics Library

We prove several results about the structure of 2-factors in iterated line graphs. Specifically, we give degree conditions on G that ensure L²(G) contains a 2-factor with every possible number of cycles, and we give a sufficient condition for the existence of a 2-factor in L²(G) with all cycle lengths specified. We also give a characterization of the graphs G where Lk(G) contains a 2-factor.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270635
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1376,
     author = {Michael Ferrara and Ronald J. Gould and Stephen G. Hartke},
     title = {The structure and existence of 2-factors in iterated line graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {507-526},
     zbl = {1142.05048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1376}
}
Michael Ferrara; Ronald J. Gould; Stephen G. Hartke. The structure and existence of 2-factors in iterated line graphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 507-526. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1376/

[000] [1] J.A. Bondy, Pancyclic graphs, I, J. Combin. Theory (B) 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.

[001] [2] G. Chartrand, The existence of complete cycles in repeated line-graphs, Bull. Amer. Math. Society 71 (1965) 668-670, doi: 10.1090/S0002-9904-1965-11389-1. | Zbl 0133.16801

[002] [3] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230, doi: 10.1016/0012-365X(84)90050-5.

[003] [4] R.J. Gould, Advances on the hamiltonian problem-a survey, Graphs Combin. 19 (2003) 7-52, doi: 10.1007/s00373-002-0492-x. | Zbl 1024.05057

[004] [5] R.J. Gould and E.A. Hynds, A note on cycles in 2-factors of line graphs, Bull. of the ICA 26 (1999) 46-48. | Zbl 0922.05046

[005] [6] F. Harary and C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-709, doi: 10.4153/CMB-1965-051-3. | Zbl 0136.44704

[006] [7] S.G. Hartke and A.W. Higgins, Minimum degree growth of the iterated line graph, Ars Combin. 69 (2003) 275-283. | Zbl 1072.05566

[007] [8] S.G. Hartke and K. Ponto, k-Ordered hamiltonicity of iterated line graphs, preprint.

[008] [9] M. Knor and L'. Niepel, Distance independent domination in iterated line graphs, Ars Combin. 79 (2006) 161-170.

[009] [10] M. Knor and L'. Niepel, Iterated Line Graphs are Maximally Ordered, J. Graph Theory 52 (2006) 171-180, doi: 10.1002/jgt.20152. | Zbl 1090.05039

[010] [11] Z. Liu and L. Xiong, Hamiltonian iterated line graphs, Discrete Math 256 (2002) 407-422, doi: 10.1016/S0012-365X(01)00442-3. | Zbl 1027.05055

[011] [12] V.D. Samodivkin, P-indices of graphs, Godishnik Vissh. Uchebn. Zaved. Prilozhna Mat. 23 (1987) 165-172.

[012] [13] D.B. West, Introduction to Graph Theory, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 2001).