Some totally 4-choosable multigraphs
Douglas R. Woodall
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 425-455 / Harvested from The Polish Digital Mathematics Library

It is proved that if G is multigraph with maximum degree 3, and every submultigraph of G has average degree at most 2(1/2) and is different from one forbidden configuration C⁺₄ with average degree exactly 2(1/2), then G is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list of 4 colours, then every element can be coloured with a colour from its own list in such a way that no two adjacent or incident elements are coloured with the same colour. This shows that the List-Total-Colouring Conjecture, that ch''(G) = χ''(G) for every multigraph G, is true for all multigraphs of this type. As a consequence, if G is a graph with maximum degree 3 and girth at least 10 that can be embedded in the plane, projective plane, torus or Klein bottle, then ch''(G) = χ''(G) = 4. Some further total choosability results are discussed for planar graphs with sufficiently large maximum degree and girth.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270317
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1372,
     author = {Douglas R. Woodall},
     title = {Some totally 4-choosable multigraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {425-455},
     zbl = {1142.05031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1372}
}
Douglas R. Woodall. Some totally 4-choosable multigraphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 425-455. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1372/

[000] [1] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992) 125-134, doi: 10.1007/BF01204715. | Zbl 0756.05049

[001] [2] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780. | Zbl 0876.05032

[002] [3] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152. | Zbl 0886.05065

[003] [4] A. Chetwynd, Total colourings of graphs, in: R. Nelson and R.J. Wilson, eds, Graph Colourings (Milton Keynes, 1988), Pitman Res. Notes Math. Ser. 218 (Longman Sci. Tech., Harlow, 1990) 65-77.

[004] [5] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, 1979, Congr. Numer. 26 (1980) 125-157.

[005] [6] M. Juvan, B. Mohar and R. Skrekovski, List total colourings of graphs, Combin. Probab. Comput. 7 (1998) 181-188, doi: 10.1017/S0963548397003210. | Zbl 0911.05033

[006] [7] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271, doi: 10.1016/0095-8956(75)90089-1. | Zbl 0322.05142

[007] [8] V.G. Vizing, Colouring the vertices of a graph in prescribed colours (in Russian), Metody Diskret. Analiz. 29 (1976) 3-10.

[008] [9] W. Wang, Total chromatic number of planar graphs with maximum degree 10, J. Graph Theory 54 (2007) 91-102, doi: 10.1002/jgt.20195. | Zbl 1110.05037

[009] [10] D.R. Woodall, List colourings of graphs, in: J.W.P. Hirschfeld, ed., Surveys in Combinatorics, 2001, London Math. Soc. Lecture Note Ser. 288 (Cambridge Univ. Press, Cambridge, 2001) 269-301. | Zbl 0979.05047