A dominating set S of a graph G is called efficient if |N[v]∩ S| = 1 for every vertex v ∈ V(G). That is, a dominating set S is efficient if and only if every vertex is dominated exactly once. In this paper, we investigate efficient multiple domination. There are several types of multiple domination defined in the literature: k-tuple domination, {k}-domination, and k-domination. We investigate efficient versions of the first two as well as a new type of multiple domination.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1371, author = {Robert R. Rubalcaba and Peter J. Slater}, title = {Efficient (j,k)-domination}, journal = {Discussiones Mathematicae Graph Theory}, volume = {27}, year = {2007}, pages = {409-423}, zbl = {1142.05062}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1371} }
Robert R. Rubalcaba; Peter J. Slater. Efficient (j,k)-domination. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 409-423. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1371/
[000] [1] D.W. Bange, A.E. Barkauskas and P.J. Slater, Disjoint dominating sets in trees, Sandia Laboratories Report, SAND 78-1087J (1978).
[001] [2] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: R.D. Ringeisen and F.S. Roberts (eds.) Applications of Discrete Mathematics, pages 189-199, (SIAM, Philadelphia, PA, 1988). | Zbl 0664.05027
[002] [3] D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient near-domination of grid graphs, Congr. Numer. 58 (1986) 83-92.
[003] [4] D.W. Bange, A.E. Barkauskas, L.H. Host and P.J. Slater, Generalized domination and efficient domination in graphs, Discrete Math. 159 (1996) 1-11, doi: 10.1016/0012-365X(95)00094-D. | Zbl 0860.05044
[004] [5] N. Biggs, Perfect codes in graphs, J. Combin. Theory (B) 15 (1973) 288-296, doi: 10.1016/0095-8956(73)90042-7. | Zbl 0256.94009
[005] [6] M. Chellali, A. Khelladi and F. Maffray, Exact double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 291-302, doi: 10.7151/dmgt.1282. | Zbl 1106.05071
[006] [7] G.S. Domke, S.T. Hedetniemi, R.C. Laskar and G. Fricke, Relationships between integer and fractional parameters of graphs, in: Y. Alavi, G. Chartrand, O.R. Oellermann and A.J. Schwenk (eds.), Graph Theory, Combinatorics, and Applications, Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, vol. 1, pages 371-387, (Kalamazoo, MI 1988), Wiley Publications, 1991. | Zbl 0840.05041
[007] [8] M. Farber, Domination, independent domination, and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984) 115-130, doi: 10.1016/0166-218X(84)90061-1. | Zbl 0531.05045
[008] [9] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1984) 283-300.
[009] [10] W. Goddard and M.A. Henning, Real and integer domination in graphs, Discrete Math. 199 (1999) 61-75, doi: 10.1016/S0012-365X(98)00286-6. | Zbl 0928.05048
[010] [11] D.L. Grinstead and P.J. Slater, On the minimum intersection of minimum dominating sets in series-parallel graphs, in: Y. Alavi, G. Chartrand, O.R. Oellermann and A.J. Schwenk (eds.), Graph Theory, Combinatorics, and Applications, Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, vol. 1, pages 563-584, (Kalamazoo, MI 1988), Wiley Publications, 1991. | Zbl 0841.05049
[011] [12] D.L. Grinstead and P.J. Slater, Fractional domination and fractional packing in graphs, Congr. Numer. 71 (1990) 153-172. | Zbl 0691.05043
[012] [13] F. Harary and T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Mathematics 155 (1996) 99-105, doi: 10.1016/0012-365X(94)00373-Q. | Zbl 0856.05053
[013] [14] R.R. Rubalcaba and M. Walsh, Minimum fractional dominating and maximum fractional packing functions, submitted. | Zbl 1215.05092
[014] [15] R.R. Rubalcaba and P.J. Slater, A note on obtaining k dominating sets from a k-dominating function on a tree, submitted. | Zbl 1139.05046
[015] [16] P.J. Slater, Generalized graph parameters: Gallai theorems I, Bull. Inst. of Comb. Appl. 17 (1996) 27-37. | Zbl 0851.05063