Monochromatic kernel-perfectness of special classes of digraphs
Hortensia Galeana-Sánchez ; Luis Alberto Jiménez Ramírez
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 389-400 / Harvested from The Polish Digital Mathematics Library

In this paper, we introduce the concept of monochromatic kernel-perfect digraph, and we prove the following two results: (1) If D is a digraph without monochromatic directed cycles, then D and each αv,vV(D) are monochromatic kernel-perfect digraphs if and only if the composition over D of (αv)vV(D) is a monochromatic kernel-perfect digraph. (2) D is a monochromatic kernel-perfect digraph if and only if for any B ⊆ V(D), the duplication of D over B, DB, is a monochromatic kernel-perfect digraph.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270413
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1369,
     author = {Hortensia Galeana-S\'anchez and Luis Alberto Jim\'enez Ram\'\i rez},
     title = {Monochromatic kernel-perfectness of special classes of digraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {389-400},
     zbl = {1142.05037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1369}
}
Hortensia Galeana-Sánchez; Luis Alberto Jiménez Ramírez. Monochromatic kernel-perfectness of special classes of digraphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 389-400. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1369/

[000] [1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).

[001] [2] M. Blidia, P. Duchet, H. Jacob, F. Maffray and H. Meyniel, Some operations preserving the existence of kernels, Discrete Math. 205 (1999) 211-216, doi: 10.1016/S0012-365X(99)00026-6. | Zbl 0936.05047

[002] [3] M. Borowiecki and A. Szelecka, One-factorizations of the generalized Cartesian product and of the X-join of regular graphs, Discuss. Math. Graph Theory 13 (1993) 15-19. | Zbl 0794.05099

[003] [4] M. Burlet and J. Uhry, Parity Graphs, Annals of Discrete Math. 21 (1984) 253-277 | Zbl 0558.05036

[004] [5] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8. | Zbl 0456.05032

[005] [6] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6. | Zbl 0529.05024

[006] [7] H. Galeana-Sánchez, On monochromatic paths and monochromatics cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-110, doi: 10.1016/0012-365X(95)00036-V.

[007] [8] H. Galeana-Sánchez and V. Neumann-Lara, On the dichromatic number in kernel theory, Math. Slovaca 48 (1998) 213-219. | Zbl 0937.05048

[008] [9] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge-coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318, doi: 10.1016/j.disc.2004.03.005. | Zbl 1049.05042

[009] [10] G. Hahn, P. Ille and R.E. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99, doi: 10.1016/j.disc.2003.10.024. | Zbl 1042.05049

[010] [11] M. Kucharska, On (k,l)-kernels of orientations of special graphs, Ars Combinatoria 60 (2001) 137-147. | Zbl 1068.05504

[011] [12] M. Kucharska, On (k,l)-kernel perfectness of special classes of digraphs, Discussiones Mathematicae Graph Theory 25 (2005) 103-119, doi: 10.7151/dmgt.1265. | Zbl 1074.05043

[012] [13] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573, doi: 10.2307/1969755. | Zbl 0053.02902

[013] [14] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7. | Zbl 0654.05033

[014] [15] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8. | Zbl 0488.05036

[015] [16] J. von Neumann and O. Morgenstern, Theory of games and economic behavior (Princeton University Press, Princeton, 1944). | Zbl 0063.05930

[016] [17] A. Włoch and I. Włoch, On (k,l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301, doi: 10.1016/S0012-365X(96)00064-7.

[017] [18] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, preprint.