Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1368, author = {Jun Zhou and Yi-Zheng Fan and Yi Wang}, title = {On the second largest eigenvalue of a mixed graph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {27}, year = {2007}, pages = {373-384}, zbl = {1134.05067}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1368} }
Jun Zhou; Yi-Zheng Fan; Yi Wang. On the second largest eigenvalue of a mixed graph. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 373-384. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1368/
[000] [1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623. | Zbl 0940.05042
[001] [2] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra 47 (2000) 217-229, doi: 10.1080/03081080008818646. | Zbl 0960.05067
[002] [3] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Applied Mathematics A Journal of Chinese Universities (English Series) 19 (2004) 140-148. | Zbl 1059.05072
[003] [4] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear and Multilinear Algebra 53 (2005) 97-113, doi: 10.1080/03081080410001681540. | Zbl 1062.05090
[004] [5] Y.-Z. Fan, On spectral integral variations of mixed graphs, Linear Algebra Appl. 374 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5. | Zbl 1026.05076
[005] [6] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.
[006] [7] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633. | Zbl 0437.15004
[007] [8] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 221-229, doi: 10.1137/S0895480191222653. | Zbl 0795.05092
[008] [9] J.-M. Guo and S.-W. Tan, A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74, doi: 10.1016/S0024-3795(00)00333-5.
[009] [10] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambridge, 1985). | Zbl 0576.15001
[010] [11] Y.-P. Hou, J.-S. Li and Y.-L. Pan, On the Laplacian eigenvalues of signed graphs, Linear and Multilinear Algebra 51 (2003) 21-30, doi: 10.1080/0308108031000053611.
[011] [12] J.-S. Li and Y.-L. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear and Multilinear Algebra 48 (2000) 117-121, doi: 10.1080/03081080008818663. | Zbl 0979.15016
[012] [13] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1998) 143-176, doi: 10.1016/0024-3795(94)90486-3. | Zbl 0802.05053
[013] [14] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry, G. Hahn and G. Sabidussi, eds (Kluwer Academic Publishers, Dordrecht, 1997) 225-275. | Zbl 0883.05096
[014] [15] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9. | Zbl 1003.05073
[015] [16] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 353 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8. | Zbl 1017.05078