For a given graph G and a positive integer r the r-path graph, , has for vertices the set of all paths of length r in G. Two vertices are adjacent when the intersection of the corresponding paths forms a path of length r-1, and their union forms either a cycle or a path of length k+1 in G. Let be the k-iteration of r-path graph operator on a connected graph G. Let H be a subgraph of . The k-history is a subgraph of G that is induced by all edges that take part in the recursive definition of H. We present some general properties of k-histories and give a complete characterization of graphs that are k-histories of vertices of 2-path graph operator.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1366, author = {Ludov\'\i t Niepel}, title = {Histories in path graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {27}, year = {2007}, pages = {345-357}, zbl = {1138.05040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1366} }
Ludovít Niepel. Histories in path graphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 345-357. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1366/
[000] [1] R.E.L. Aldred, M.N. Ellingham, R. Hemminger and P. Jipsen, P₃-isomorphism for graphs, J. Graph Theory 26 (1997) 35-51, doi: 10.1002/(SICI)1097-0118(199709)26:1<35::AID-JGT5>3.0.CO;2-I | Zbl 0884.05065
[001] [2] C. Balbuena and D. Ferrero, Edge-connectivity and super edge-connectivity of P₂-path graphs, Discrete Math. 269 (2003) 13-20, doi: 10.1016/S0012-365X(02)00828-2. | Zbl 1021.05061
[002] [3] C. Balbuena and P. García-Vázquez, Edge-connectivity in Pₖ-path graphs, Discrete Math. 286 (2004) 213-218, doi: 10.1016/j.disc.2004.05.007. | Zbl 1057.05047
[003] [4] H.J. Broersma and C. Hoede, Path graphs, J. Graph Theory 13 (1989) 427-444, doi: 10.1002/jgt.3190130406. | Zbl 0677.05068
[004] [5] D. Ferrero, Edge connectivity of iterated P₃-path graphs, Congr. Numer. 155 (2002) 33-47. | Zbl 1018.05053
[005] [6] D. Ferrero, Connectivity of path graphs, Acta Mathematica Universitatis Comenianae LXXII (1) (2003) 59-66. | Zbl 1100.05056
[006] [7] M. Knor and L. Niepel, Diameter in iterated path graphs, Discrete Math. 233 (2001) 151-161, doi: 10.1016/S0012-365X(00)00234-X. | Zbl 0989.05036
[007] [8] M. Knor and L. Niepel, Centers in path graphs, JCISS 24 (1999) 79-86.
[008] [9] M. Knor and L. Niepel, Independence number in path graphs, Computing and Informatics 23 (2004) 179-187.
[009] [10] H. Li and Y. Lin, On the characterization of path graphs, J. Graph Theory 17 (1993) 463-466, doi: 10.1002/jgt.3190170403. | Zbl 0780.05048
[010] [11] X. Li, Isomorphism of P₃-graphs, J. Graph Theory 21 (1996) 81-85, doi: 10.1002/(SICI)1097-0118(199601)21:1<81::AID-JGT11>3.0.CO;2-V
[011] [12] L. Niepel, M. Knor and L. Soltés, Distances in iterated line graphs, Ars Combin. 43 (1996) 193-202. | Zbl 0881.05059
[012] [13] E. Prisner, Graph dynamics, Pitman Research Notes in Mathematics Series Vol 338 (Longman, Essex, 1995). | Zbl 0848.05001
[013] [14] E. Prisner, Recognizing k-path graphs, Discrete Appl. Math. 99 (2000) 169-181, doi: 10.1016/S0166-218X(99)00132-8. | Zbl 0941.05042
[014] [15] E. Prisner, The dynamics of the line and path graph operators, Discrete Math. 103 (1992) 199-207, doi: 10.1016/0012-365X(92)90270-P. | Zbl 0766.05096
[015] [16] X. Yu, Trees and unicyclic graphs with hamiltonian path graphs, J. Graph Theory 14 (1990) 705-708, doi: 10.1002/jgt.3190140610. | Zbl 0743.05018