Cycles through specified vertices in triangle-free graphs
Daniel Paulusma ; Kiyoshi Yoshimoto
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 179-191 / Harvested from The Polish Digital Mathematics Library

Let G be a triangle-free graph with δ(G) ≥ 2 and σ₄(G) ≥ |V(G)| + 2. Let S ⊂ V(G) consist of less than σ₄/4+ 1 vertices. We prove the following. If all vertices of S have degree at least three, then there exists a cycle C containing S. Both the upper bound on |S| and the lower bound on σ₄ are best possible.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270311
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1354,
     author = {Daniel Paulusma and Kiyoshi Yoshimoto},
     title = {Cycles through specified vertices in triangle-free graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {179-191},
     zbl = {1134.05043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1354}
}
Daniel Paulusma; Kiyoshi Yoshimoto. Cycles through specified vertices in triangle-free graphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 179-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1354/

[000] [1] P. Ash and B. Jackson, Dominating cycles in bipartite graphs, in: Progress in Graph Theory, J.A. Bondy, U.S.R. Murty, eds., (Academic Press, 1984), 81-87. | Zbl 0562.05032

[001] [2] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 137-155. | Zbl 0780.05033

[002] [3] J.A. Bondy, Longest Paths and Cycles in Graphs of High Degree, Research Report CORR 80-16 (1980).

[003] [4] J.A. Bondy and L. Lovász, Cycles through specified vertices of a graph, Combinatorica 1 (1981) 117-140, doi: 10.1007/BF02579268. | Zbl 0492.05049

[004] [5] H. Broersma, H. Li, J. Li, F. Tian and H.J. Veldman, Cycles through subsets with large degree sums, Discrete Math. 171 (1997) 43-54, doi: 10.1016/S0012-365X(96)00071-4. | Zbl 0883.05089

[005] [6] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000).

[006] [7] Y. Egawa, R. Glas and S.C. Locke, Cycles and paths trough specified vertices in k-connected graphs, J. Combin. Theory (B) 52 (1991) 20-29, doi: 10.1016/0095-8956(91)90086-Y. | Zbl 0666.05044

[007] [8] J. Harant, On paths and cycles through specified vertices, Discrete Math. 286 (2004) 95-98, doi: 10.1016/j.disc.2003.11.059. | Zbl 1048.05050

[008] [9] H. Enomoto, J. van den Heuvel, A. Kaneko and A. Saito, Relative length of long paths and cycles in graphs with large degree sums, J. Graph Theory 20 (1995) 213-225, doi: 10.1002/jgt.3190200210. | Zbl 0841.05057

[009] [10] D.A. Holton, Cycles through specified vertices in k-connected regular graphs, Ars Combin. 13 (1982) 129-143. | Zbl 0497.05036

[010] [11] O. Ore, Note on hamiltonian circuits, American Mathematical Monthly 67 (1960) 55, doi: 10.2307/2308928. | Zbl 0089.39505

[011] [12] K. Ota, Cycles through prescribed vertices with large degree sum, Discrete Math. 145 (1995) 201-210, doi: 10.1016/0012-365X(94)00036-I. | Zbl 0838.05071

[012] [13] D. Paulusma and K. Yoshimoto, Relative length of longest paths and longest cycles in triangle-free graphs, submitted, http://www.math.cst.nihon-u.ac.jp/yosimoto/paper/related_length1_sub.pdf. | Zbl 1134.05042

[013] [14] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory (B) 47 (1989) 220-230, doi: 10.1016/0095-8956(89)90021-X. | Zbl 0686.05031

[014] [15] L. Stacho, Cycles through specified vertices in 1-tough graphs, Ars Combin. 56 (2000) 263-269. | Zbl 0994.05081

[015] [16] K. Yoshimoto, Edge degree conditions and all longest cycles which are dominating, submitted.

[016] [17] S.J. Zheng, Cycles and paths through specified vertices, Journal of Nanjing Normal University, Natural Science Edition, Nanjing Shida Xuebao, Ziran Kexue Ban 23 (2000) 9-13. | Zbl 0985.05031