Total domination of Cartesian products of graphs
Xinmin Hou
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 175-178 / Harvested from The Polish Digital Mathematics Library

Let γₜ(G) and γpr(G) denote the total domination and the paired domination numbers of graph G, respectively, and let G □ H denote the Cartesian product of graphs G and H. In this paper, we show that γₜ(G)γₜ(H) ≤ 5γₜ(G □ H), which improves the known result γₜ(G)γₜ(H) ≤ 6γₜ(G □ H) given by Henning and Rall.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270655
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1353,
     author = {Xinmin Hou},
     title = {Total domination of Cartesian products of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {175-178},
     zbl = {1134.05073},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1353}
}
Xinmin Hou. Total domination of Cartesian products of graphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 175-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1353/

[000] [1] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. | Zbl 0447.05039

[001] [2] W.E. Clark and S. Suen, An inequality related to Vizing's conjecture, Electron. J. Combin. 7 (2000), No.1, Note 4, 3pp. (electronic). | Zbl 0947.05056

[002] [3] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs and Combinatorics 21 (2005) 63-69, doi: 10.1007/s00373-004-0586-8. | Zbl 1062.05109

[003] [4] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199-206, doi: 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F | Zbl 0997.05074

[004] [5] V.G. Vizing, Some unsolved problems in graph theory, Usp. Mat. Nauk 23 (1968), no. 6(144) 117-134. | Zbl 0177.52301