Orientation distance graphs revisited
Wayne Goddard ; Kiran Kanakadandi
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 125-136 / Harvested from The Polish Digital Mathematics Library

The orientation distance graph 𝓓ₒ(G) of a graph G is defined as the graph whose vertex set is the pair-wise non-isomorphic orientations of G, and two orientations are adjacent iff the reversal of one edge in one orientation produces the other. Orientation distance graphs was introduced by Chartrand et al. in 2001. We provide new results about orientation distance graphs and simpler proofs to existing results, especially with regards to the bipartiteness of orientation distance graphs and the representation of orientation distance graphs using hypercubes. We provide results concerning the orientation distance graphs of paths, cycles and other common graphs.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270602
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1349,
     author = {Wayne Goddard and Kiran Kanakadandi},
     title = {Orientation distance graphs revisited},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {125-136},
     zbl = {1133.05040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1349}
}
Wayne Goddard; Kiran Kanakadandi. Orientation distance graphs revisited. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 125-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1349/

[000] [1] G. Chartrand, D. Erwin, M. Raines and P. Zhang, Orientation distance graphs, J. Graph Theory 34 (2001) 230-241, doi: 10.1002/1097-0118(200104)36:4<230::AID-JGT1008>3.0.CO;2-# | Zbl 0988.05044

[001] [2] K. Kanakadandi, On Orientation Distance Graphs, M. Sc. thesis, (Clemson University, Clemson, 2006). | Zbl 1133.05040

[002] [3] M. Livingston and Q.F. Stout, Embeddings in hypercubes, Math. Comput. Modelling 11 (1988) 222-227, doi: 10.1016/0895-7177(88)90486-4.

[003] [4] B. McKay's Digraphs page, at: http://cs.anu.edu.au/∼bdm/data/digraphs.html.

[004] [5] Jeb F. Willenbring at Sloane's 'The Online Encyclopedia of Integer Sequences' located at: http://www.research.att.com/projects/OEIS?Anum=A053656.

[005] [6] B. Zelinka, The distance between various isomorphisms of a graph, Math. Slovaka 38 (1988) 19-25. | Zbl 0644.05024