Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two
Shi-Cai Gong ; Yi-Zheng Fan
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 69-82 / Harvested from The Polish Digital Mathematics Library

This paper determines all nonsingular unicyclic mixed graphs on at least nine vertices with at most three Laplacian eigenvalues greater than two.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270617
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1345,
     author = {Shi-Cai Gong and Yi-Zheng Fan},
     title = {Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {69-82},
     zbl = {1139.05033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1345}
}
Shi-Cai Gong; Yi-Zheng Fan. Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 69-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1345/

[000] [1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623. | Zbl 0940.05042

[001] [2] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra 47 (2000) 217-229, doi: 10.1080/03081080008818646. | Zbl 0960.05067

[002] [3] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Applied Mathematics A Journal of Chinese Universities (English Series) 19 (2004) 140-148. | Zbl 1059.05072

[003] [4] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear and Multilinear Algebra, accepted for publication.

[004] [5] Y.-Z. Fan, On spectral integral variations of mixed graphs, Linear Algebra Appl. 347 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5. | Zbl 1026.05076

[005] [6] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633. | Zbl 0437.15004

[006] [7] R. Grone, R. Merris and V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016. | Zbl 0733.05060

[007] [8] J.-M. Guo and S.-W. Tan, A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74, doi: 10.1016/S0024-3795(00)00333-5.

[008] [9] R.A. Horn and C.R. Johnson, Matrix analysis (Cambridge University Press, 1985). | Zbl 0576.15001

[009] [10] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9. | Zbl 1003.05073

[010] [11] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 353 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8. | Zbl 1017.05078