This paper determines all nonsingular unicyclic mixed graphs on at least nine vertices with at most three Laplacian eigenvalues greater than two.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1345, author = {Shi-Cai Gong and Yi-Zheng Fan}, title = {Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two}, journal = {Discussiones Mathematicae Graph Theory}, volume = {27}, year = {2007}, pages = {69-82}, zbl = {1139.05033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1345} }
Shi-Cai Gong; Yi-Zheng Fan. Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 69-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1345/
[000] [1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623. | Zbl 0940.05042
[001] [2] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra 47 (2000) 217-229, doi: 10.1080/03081080008818646. | Zbl 0960.05067
[002] [3] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Applied Mathematics A Journal of Chinese Universities (English Series) 19 (2004) 140-148. | Zbl 1059.05072
[003] [4] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear and Multilinear Algebra, accepted for publication.
[004] [5] Y.-Z. Fan, On spectral integral variations of mixed graphs, Linear Algebra Appl. 347 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5. | Zbl 1026.05076
[005] [6] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633. | Zbl 0437.15004
[006] [7] R. Grone, R. Merris and V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016. | Zbl 0733.05060
[007] [8] J.-M. Guo and S.-W. Tan, A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74, doi: 10.1016/S0024-3795(00)00333-5.
[008] [9] R.A. Horn and C.R. Johnson, Matrix analysis (Cambridge University Press, 1985). | Zbl 0576.15001
[009] [10] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9. | Zbl 1003.05073
[010] [11] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 353 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8. | Zbl 1017.05078