A 2-packing of a hypergraph 𝓗 is a permutation σ on V(𝓗) such that if an edge e belongs to 𝓔(𝓗), then σ (e) does not belong to 𝓔(𝓗). We prove that a hypergraph which does not contain neither empty edge ∅ nor complete edge V(𝓗) and has at most 1/2n edges is 2-packable. A 1-uniform hypergraph of order n with more than 1/2n edges shows that this result cannot be improved by increasing the size of 𝓗.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1343, author = {Monika Pil\'sniak and Mariusz Wo\'zniak}, title = {A note on packing of two copies of a hypergraph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {27}, year = {2007}, pages = {45-49}, zbl = {1133.05064}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1343} }
Monika Pilśniak; Mariusz Woźniak. A note on packing of two copies of a hypergraph. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 45-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1343/
[000] [1] A. Benhocine and A.P. Wojda, On self-complementation, J. Graph Theory 8 (1985) 335-341, doi: 10.1002/jgt.3190090305. | Zbl 0587.05054
[001] [2] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[002] [3] D. Burns and S. Schuster, Every (n, n-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308. | Zbl 0375.05046
[003] [4] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0. | Zbl 0807.05025
[004] [5] M. Woźniak, Packing of graphs, Dissertationes Math. 362 (1997) 1-78.
[005] [6] M. Woźniak, Packing of graphs and permutations - a survey, Discrete Math. 276 (2004) 379-391, doi: 10.1016/S0012-365X(03)00296-6. | Zbl 1031.05041
[006] [7] H.P. Yap, Some Topics in Graph Theory, London Math. Society, Lecture Notes Series, Vol. 108 (Cambridge University Press, Cambridge, 1986). | Zbl 0588.05002
[007] [8] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4. | Zbl 0685.05036