For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1342, author = {Anthony Bonato}, title = {A note on uniquely H-colourable graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {27}, year = {2007}, pages = {39-44}, zbl = {1137.05026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1342} }
Anthony Bonato. A note on uniquely H-colourable graphs. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 39-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1342/
[000] [1] A. Bonato, A family of universal pseudo-homogeneous G-colourable graphs, Discrete Math. 247 (2002) 13-23, doi: 10.1016/S0012-365X(01)00158-3. | Zbl 0997.05032
[001] [2] A. Bonato, Homomorphisms and amalgamation, Discrete Math. 270 (2003) 32-41, doi: 10.1016/S0012-365X(02)00864-6.
[002] [3] K. Collins and B. Shemmer, Constructions of 3-colorable cores, SIAM J. Discrete Math. 16 (2002) 74-80, doi: 10.1137/S0895480101390898. | Zbl 1029.05050
[003] [4] D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487-495, doi: 10.1002/jgt.3190090409. | Zbl 0664.05019
[004] [5] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colorable graphs, J. Combin. Theory 6 (1969) 264-270, doi: 10.1016/S0021-9800(69)80086-4. | Zbl 0175.50205
[005] [6] P. Hell and J. Nesetril, Graphs and Homomorphisms (Oxford University Press, Oxford, 2004), doi: 10.1093/acprof:oso/9780198528173.001.0001. | Zbl 1062.05139
[006] [7] J. Kratochvíl and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X. | Zbl 0949.05025
[007] [8] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discuss. Math. Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040. | Zbl 0905.05038
[008] [9] X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory 23 (1996) 33-41, doi: 10.1002/(SICI)1097-0118(199609)23:1<33::AID-JGT3>3.0.CO;2-L | Zbl 0864.05037
[009] [10] X. Zhu, Construction of uniquely H-colorable graphs, J. Graph Theory 30 (1999) 1-6, doi: 10.1002/(SICI)1097-0118(199901)30:1<1::AID-JGT1>3.0.CO;2-P