Global alliances and independence in trees
Mustapha Chellali ; Teresa W. Haynes
Discussiones Mathematicae Graph Theory, Tome 27 (2007), p. 19-27 / Harvested from The Polish Digital Mathematics Library

A global defensive (respectively, offensive) alliance in a graph G = (V,E) is a set of vertices S ⊆ V with the properties that every vertex in V-S has at least one neighbor in S, and for each vertex v in S (respectively, in V-S) at least half the vertices from the closed neighborhood of v are in S. These alliances are called strong if a strict majority of vertices from the closed neighborhood of v must be in S. For each kind of alliance, the associated parameter is the minimum cardinality of such an alliance. We determine relationships among these four parameters and the vertex independence number for trees.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:270383
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1340,
     author = {Mustapha Chellali and Teresa W. Haynes},
     title = {Global alliances and independence in trees},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {27},
     year = {2007},
     pages = {19-27},
     zbl = {1189.05123},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1340}
}
Mustapha Chellali; Teresa W. Haynes. Global alliances and independence in trees. Discussiones Mathematicae Graph Theory, Tome 27 (2007) pp. 19-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1340/

[000] [1] M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees, Austral. J. Combin. 33 (2005) 317-327.

[001] [2] G. Chartrand and L. Lesniak, Graphs & Digraphs: Third Edition (Chapman & Hall, London, 1996).

[002] [3] E.J. Cockayne, O. Favaron, C. Payan and A.G. Thomason, Contributions to the theory of domination, independence, and irredundance in graphs, Discrete Math. 33 (1981) 249-258, doi: 10.1016/0012-365X(81)90268-5. | Zbl 0471.05051

[003] [4] T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Global defensive alliances in graphs, The Electronic J. Combin. 10 (2003) R47. | Zbl 1031.05096

[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002

[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). | Zbl 0883.00011

[006] [7] S.M. Hedetniemi, S.T. Hedetniemi and P. Kristiansen, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177. | Zbl 1051.05068