We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also derived.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1336, author = {Adam Idzik and Konstanty Junosza-Szaniawski}, title = {Combinatorial lemmas for polyhedrons I}, journal = {Discussiones Mathematicae Graph Theory}, volume = {26}, year = {2006}, pages = {439-338}, zbl = {1135.52002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1336} }
Adam Idzik; Konstanty Junosza-Szaniawski. Combinatorial lemmas for polyhedrons I. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 439-338. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1336/
[000] [1] A.D. Alexandrov, Convex Polyhedra (Springer, Berlin, 2005).
[001] [2] R.W. Freund, Variable dimension complexes Part II: A unified approach to some combinatorial lemmas in topology, Math. Oper. Res. 9 (1984) 498-509, doi: 10.1287/moor.9.4.498. | Zbl 0556.57015
[002] [3] C.B. Garcia, A hybrid algorithm for the computation of fixed points, Manag. Sci. 22 (1976) 606-613, doi: 10.1287/mnsc.22.5.606. | Zbl 0358.90032
[003] [4] B. Grunbaum, Convex Polytopes (Wiley, London, 1967).
[004] [5] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387-398. | Zbl 1038.05010
[005] [6] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for polyhedrons, Discuss. Math. Graph Theory 25 (2005) 95-102, doi: 10.7151/dmgt.1264. | Zbl 1075.52502
[006] [7] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929) 132-137. | Zbl 55.0972.01
[007] [8] W. Kulpa, Poincaré and Domain Invariance Theorem, Acta Univ. Carolinae - Mathematica et Physica 39 (1998) 127-136. | Zbl 1007.54040
[008] [9] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) 96 (2001) 25-38, doi: 10.1006/jcta.2001.3178. | Zbl 1091.52007
[009] [10] H. Scarf, The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math. 15 (1967) 1328-1343, doi: 10.1137/0115116. | Zbl 0153.49401
[010] [11] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming, New York: Academic Press (1973) 261-290. | Zbl 0267.90100
[011] [12] E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265-272, doi: 10.1007/BF02940617. | Zbl 54.0614.01