A lower bound on the independence number of a graph in terms of degrees
Jochen Harant ; Ingo Schiermeyer
Discussiones Mathematicae Graph Theory, Tome 26 (2006), p. 431-437 / Harvested from The Polish Digital Mathematics Library

For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:270505
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1335,
     author = {Jochen Harant and Ingo Schiermeyer},
     title = {A lower bound on the independence number of a graph in terms of degrees},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {26},
     year = {2006},
     pages = {431-437},
     zbl = {1138.05051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1335}
}
Jochen Harant; Ingo Schiermeyer. A lower bound on the independence number of a graph in terms of degrees. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 431-437. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1335/

[000] [1] E. Bertram and P. Horak, Lower bounds on the independence number, Geombinatorics V (1996) 93-98. | Zbl 0972.05024

[001] [2] Y. Caro, New results on the independence number (Technical Report. Tel-Aviv University, 1979).

[002] [3] Y. Caro and Z. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107, doi: 10.1002/jgt.3190150110. | Zbl 0753.68079

[003] [4] S. Fajtlowicz, On the size of independent sets in graphs, Proc. 9th S-E Conf. on Combinatorics, Graph Theory and Computing, Boca Raton 1978, 269-274. | Zbl 0434.05044

[004] [5] S. Fajtlowicz, Independence, clique size and maximum degree, Combinatorica 4 (1984) 35-38, doi: 10.1007/BF02579154. | Zbl 0576.05025

[005] [6] J. Harant, A lower bound on the independence number of a graph, Discrete Math. 188 (1998) 239-243, doi: 10.1016/S0012-365X(98)00048-X. | Zbl 0958.05067

[006] [7] J. Harant and I. Schiermeyer, On the independence number of a graph in terms of order and size, Discrete Math. 232 (2001) 131-138, doi: 10.1016/S0012-365X(00)00298-3.

[007] [8] O. Murphy, Lower bounds on the stability number of graphs computed in terms of degrees, Discrete Math. 90 (1991) 207-211, doi: 10.1016/0012-365X(91)90357-8. | Zbl 0755.05055

[008] [9] S.M. Selkow, A Probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363-365, doi: 10.1016/0012-365X(93)00102-B. | Zbl 0810.05039

[009] [10] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83-87, doi: 10.1016/0012-365X(83)90273-X. | Zbl 0516.05053

[010] [11] J.B. Shearer, A note on the independence number of triangle-free graphs, II, J. Combin. Theory (B) 53 (1991) 300-307, doi: 10.1016/0095-8956(91)90080-4. | Zbl 0753.05074

[011] [12] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).