A note on joins of additive hereditary graph properties
Ewa Drgas-Burchardt
Discussiones Mathematicae Graph Theory, Tome 26 (2006), p. 413-418 / Harvested from The Polish Digital Mathematics Library

Let La denote a set of additive hereditary graph properties. It is a known fact that a partially ordered set (La,) is a complete distributive lattice. We present results when a join of two additive hereditary graph properties in (La,) has a finite or infinite family of minimal forbidden subgraphs.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:270690
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1333,
     author = {Ewa Drgas-Burchardt},
     title = {A note on joins of additive hereditary graph properties},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {26},
     year = {2006},
     pages = {413-418},
     zbl = {1138.05060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1333}
}
Ewa Drgas-Burchardt. A note on joins of additive hereditary graph properties. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 413-418. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1333/

[000] [1] A.J. Berger, Minimal forbidden subgraphs of reducible graph properties, Discuss. Math. Graph Theory 21 (2001) 111-117, doi: 10.7151/dmgt.1136. | Zbl 0989.05060

[001] [2] A.J. Berger, I. Broere, S.J.T. Moagi and P. Mihók, Meet- and join-irreducibility of additive hereditary properties of graphs, Discrete Math. 251 (2002) 11-18, doi: 10.1016/S0012-365X(01)00323-5. | Zbl 1003.05101

[002] [3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishawa International Publication, Gulbarga, 1991) 41-68.

[003] [4] I. Broere, M. Frick and G.Semanišin, Maximal graphs with respect to hereditary properties, Discuss. Math. Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038. | Zbl 0902.05027

[004] [5] D.L. Greenwell, R.L. Hemminger and J. Klerlein, Forbidden subgraphs, Proceedings of the 4th S-E Conf. Combinatorics, Graph Theory and Computing (Utilitas Math., Winnipeg, Man., 1973) 389-394. | Zbl 0312.05128

[005] [6] J. Jakubik, On the Lattice of Additive Hereditary Properties of Finite Graphs, Discuss. Math. General Algebra and Applications 22 (2002) 73-86. | Zbl 1032.06003