A graph G of order n is called arbitrarily vertex decomposable if for each sequence (n₁,...,nₖ) of positive integers such that , there exists a partition (V₁,...,Vₖ) of vertex set of G such that for every i ∈ 1,...,k the set induces a connected subgraph of G on vertices. We consider arbitrarily vertex decomposable unicyclic graphs with dominating cycle. We also characterize all such graphs with at most four hanging vertices such that exactly two of them have a common neighbour.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1332, author = {Sylwia Cichacz and Irmina A. Zio\l o}, title = {On arbitrarily vertex decomposable unicyclic graphs with dominating cycle}, journal = {Discussiones Mathematicae Graph Theory}, volume = {26}, year = {2006}, pages = {403-412}, zbl = {1131.05071}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1332} }
Sylwia Cichacz; Irmina A. Zioło. On arbitrarily vertex decomposable unicyclic graphs with dominating cycle. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 403-412. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1332/
[000] [1] D. Barth, O. Baudon and J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002) 205-216, doi: 10.1016/S0166-218X(00)00322-X. | Zbl 1002.68107
[001] [2] D. Barth and H. Fournier, A degree bound on decomposable trees, Discrete Math. 306 (2006) 469-477, doi: 10.1016/j.disc.2006.01.006. | Zbl 1092.05054
[002] [3] S. Cichacz, A. Görlich, A. Marczyk, J. Przybyło and M. Woźniak, Arbitrarily vertex decomposable caterpillars with four or five leaves, Preprint MD-010 (2005), http://www.ii.uj.edu.pl/preMD/, to appear. | Zbl 1142.05065
[003] [4] M. Hornák and M. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Math. 23 (2003) 49-62. | Zbl 1093.05510
[004] [5] R. Kalinowski, M. Pilśniak, M. Woźniak and I.A. Zioło, Arbitrarily vertex decomposable suns with few rays, preprint (2005), http://www.ii.uj.edu.pl/preMD/. | Zbl 1214.05125
[005] [6] A. Marczyk, Ore-type condition for arbitrarily vertex decomposable graphs, preprint (2005).