For a given induced hereditary property 𝓟, a 𝓟-coloring of a graph G is an assignment of one color to each vertex such that the subgraphs induced by each of the color classes have property 𝓟. We consider the effectiveness of on-line 𝓟-coloring algorithms and give the generalizations and extensions of selected results known for on-line proper coloring algorithms. We prove a linear lower bound for the performance guarantee function of any stingy on-line 𝓟-coloring algorithm. In the class of generalized trees, we characterize graphs critical for the greedy 𝓟-coloring. A class of graphs for which a greedy algorithm always generates optimal 𝓟-colorings for the property 𝓟 = K₃-free is given.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1331, author = {Piotr Borowiecki}, title = {On-line P-coloring of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {26}, year = {2006}, pages = {389-401}, zbl = {1138.05019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1331} }
Piotr Borowiecki. On-line 𝓟-coloring of graphs. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 389-401. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1331/
[000] [1] D.R. Bean, Effective coloration, J. Symbolic Logic 41 (1976) 469-480, doi: 10.2307/2272247. | Zbl 0331.02025
[001] [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026
[002] [3] P. Borowiecki, On-line coloring of graphs, in: M. Kubale ed., Graph Colorings, Contemporary Mathematics 352 (American Mathematical Society, 2004) 21-33.
[003] [4] A. Gyárfás and J. Lehel, First-Fit and on-line chromatic number of families of graphs, Ars Combinatoria 29C (1990) 168-176. | Zbl 0712.05026
[004] [5] H.A. Kierstead, Coloring Graphs On-line, in: A. Fiat and G.J. Woeginger eds., Online Algorithms - The State of the Art, LNCS 1442 (Springer, Berlin, 1998) 281-305.