In a graph, by definition, the weight of a (proper) coloring with positive integers is the sum of the colors. The chromatic sum is the minimum weight, taken over all the proper colorings. The minimum number of colors in a coloring of minimum weight is the cost chromatic number or strength of the graph. We derive general upper bounds for the strength, in terms of a new parameter of representations by edge intersections of hypergraphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1329, author = {G\'abor Bacs\'o and Zsolt Tuza}, title = {The cost chromatic number and hypergraph parameters}, journal = {Discussiones Mathematicae Graph Theory}, volume = {26}, year = {2006}, pages = {369-376}, zbl = {1135.05019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1329} }
Gábor Bacsó; Zsolt Tuza. The cost chromatic number and hypergraph parameters. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 369-376. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1329/
[000] [1] Y. Alavi, P. Erdős, P.J. Malde, A.J. Schwenk and C. Thomassen, Tight bounds on the chromatic sum of a connected graph, J. Graph Theory 13 (1989) 353-357, doi: 10.1002/jgt.3190130310. | Zbl 0677.05028
[001] [2] U. Feigle, L. Lovász and P. Tetali, Approximating sum set cover, Algorithmica 40 (2004) 219-234, doi: 10.1007/s00453-004-1110-5. | Zbl 1082.68126
[002] [3] M. Gionfriddo, F. Harary and Zs. Tuza, The color cost of a caterpillar, Discrete Math. 174 (1997) 125-130, doi: 10.1016/S0012-365X(96)00325-1. | Zbl 0887.05018
[003] [4] E. Kubicka, Constraints on the chromatic sequence for trees and graphs, Congr. Numer. 76 (1990) 219-230. | Zbl 0862.05044
[004] [5] E. Kubicka and A.J. Schwenk, An introduction to chromatic sums, in: Proc. ACM Computer Science Conference, Louisville (Kentucky) 1989, 39-45.
[005] [6] J. Mitchem and P. Morriss, On the cost chromatic number of graphs, Discrete Math. 171 (1997) 201-211, doi: 10.1016/S0012-365X(96)00005-2. | Zbl 0876.05031
[006] [7] J. Mitchem, P. Morriss and E. Schmeichel, On the cost chromatic number of outerplanar, planar and line graphs, Discuss. Math. Graph Theory 17 (1997) 229-241, doi: 10.7151/dmgt.1050. | Zbl 0909.05027
[007] [8] M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method (Springer, 2002). | Zbl 0987.05002
[008] [9] T. Szkaliczki, Routing with minimum wire length in the Dogleg-free Manhattan Model, SIAM Journal on Computing 29 (1999) 274-287, doi: 10.1137/S0097539796303123. | Zbl 0937.68055
[009] [10] Zs. Tuza, Contractions and minimal k-colorability, Graphs and Combinatorics 6 (1990) 51-59, doi: 10.1007/BF01787480.
[010] [11] Zs. Tuza, Problems and results on graph and hypergraph colorings, Le Matematiche 45 (1990) 219-238.