Let G be a finite group, and let . A Cayley di-graph Γ = Cay(G,S) of G relative to S is a di-graph with a vertex set G such that, for x,y ∈ G, the pair (x,y) is an arc if and only if . Further, if , then Γ is undirected. Γ is conected if and only if G = ⟨s⟩. A Cayley (di)graph Γ = Cay(G,S) is called normal if the right regular representation of G is a normal subgroup of the automorphism group of Γ. A graph Γ is said to be arc-transitive, if Aut(Γ) is transitive on an arc set. Also, a graph Γ is s-regular if Aut(Γ) acts regularly on the set of s-arcs. In this paper, we first give a complete classification for arc-transitive Cayley graphs of valency five on finite Abelian groups. Moreover, we classify s-regular Cayley graph with valency five on an abelian group for each s ≥ 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1328, author = {Mehdi Alaeiyan}, title = {Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups}, journal = {Discussiones Mathematicae Graph Theory}, volume = {26}, year = {2006}, pages = {359-368}, zbl = {1136.05024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1328} }
Mehdi Alaeiyan. Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 359-368. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1328/
[000] [1] B. Alspach, M. Conder, D. Marusic and Ming-Yao Xu, A classification of 2-arc-transitive circulant, J. Algebraic Combin. 5 (1996) 83-86, doi: 10.1023/A:1022456615990. | Zbl 0849.05034
[001] [2] N. Biggs, Algebraic Graph Theory (Cambridge University Press, 1974). | Zbl 0284.05101
[002] [3] Y.G. Baik, Y.Q. Feng and H.S. Sim, The normality of Cayley graphs of finite Abelian groups with valency 5, System Science and Mathematical Science 13 (2000) 420-431. | Zbl 0973.05038
[003] [4] J.L. Berggren, An algebraic characterization of symmetric graph with p point, Bull. Aus. Math. Soc. 158 (1971) 247-256.
[004] [5] C.Y. Chao, On the classification of symmetric graph with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247-256, doi: 10.1090/S0002-9947-1971-0279000-7. | Zbl 0217.02403
[005] [6] C.Y. Chao and J. G. Wells, A class of vertex-transitive digraphs, J. Combin. Theory (B) 14 (1973) 246-255, doi: 10.1016/0095-8956(73)90007-5. | Zbl 0245.05109
[006] [7] J.D. Dixon and B. Mortimer, Permutation Groups (Springer-Verlag, 1996). | Zbl 0951.20001
[007] [8] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256, doi: 10.1007/BF02579330. | Zbl 0489.05028
[008] [9] C.D. Godsil and G. Royle, Algebric Graph Theory (Springer-Verlag, 2001).
[009] [10] H. Wielandt, Finite Permutation Group (Academic Press, New York, 1964). | Zbl 0138.02501
[010] [11] Ming-Yao Xu and Jing Xu, Arc-transitive Cayley graph of valency at most four on Abelian Groups, Southest Asian Bull. Math. 25 (2001) 355-363, doi: 10.1007/s10012-001-0355-z. | Zbl 0993.05086
[011] [12] Ming-Yao Xu, A note on one-regular graphs of valency four, Chinese Science Bull. 45 (2000) 2160-2162.
[012] [13] Ming-Yao Xu, Hyo-Seob Sim and Youg-Gheel Baik, Arc-transitive circulant digraphs of odd prime-power order, (summitted). | Zbl 1050.05064
[013] [14] Ming-Yao Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-319, doi: 10.1016/S0012-365X(97)00152-0. | Zbl 0887.05025