In this note we give an upper bound for λ(n), the maximum number of edges in a strongly multiplicative graph of order n, which is sharper than the upper bounds given by Beineke and Hegde [3] and Adiga, Ramaswamy and Somashekara [2], for n ≥ 28.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1315, author = {Chandrashekar Adiga and Mahadev Smitha}, title = {An upper bound for maximum number of edges in a strongly multiplicative graph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {26}, year = {2006}, pages = {225-229}, zbl = {1142.05070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1315} }
Chandrashekar Adiga; Mahadev Smitha. An upper bound for maximum number of edges in a strongly multiplicative graph. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 225-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1315/
[000] [1] C. Adiga, H.N. Ramaswamy and D.D. Somashekara, On strongly multiplicative graphs, South East Asian J. Math. & Math. Sc. 2 (2003) 45-47. | Zbl 1050.05106
[001] [2] C. Adiga, H.N. Ramaswamy and D.D. Somashekara, A note on strongly multiplicative graphs, Discuss. Math. Graph Theory 24 (2004) 81-83, doi: 10.7151/dmgt.1215. | Zbl 1057.05072
[002] [3] L.W. Beineke and S.M. Hegde, Strongly multiplicative graphs, Discuss. Math. Graph Theory 21 (2001) 63-76, doi: 10.7151/dmgt.1133. | Zbl 0989.05101
[003] [4] P. Erdős, An asymptotic inequality in the theory of numbers, Vestnik Leningrad. Univ. 15 (1960) 41-49. | Zbl 0104.26804