A prime factor theorem for a generalized direct product
Wilfried Imrich ; Peter F. Stadler
Discussiones Mathematicae Graph Theory, Tome 26 (2006), p. 135-140 / Harvested from The Polish Digital Mathematics Library

We introduce the concept of neighborhood systems as a generalization of directed, reflexive graphs and show that the prime factorization of neighborhood systems with respect to the the direct product is unique under the condition that they satisfy an appropriate notion of thinness.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:270267
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1307,
     author = {Wilfried Imrich and Peter F. Stadler},
     title = {A prime factor theorem for a generalized direct product},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {26},
     year = {2006},
     pages = {135-140},
     zbl = {1114.05045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1307}
}
Wilfried Imrich; Peter F. Stadler. A prime factor theorem for a generalized direct product. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 135-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1307/

[000] [1] E. Cech, Topological spaces, Revised edition by Z. Frolí k and M. Katetov, Scientific editor, V. Pták. Editor of the English translation, Charles O. Junge (Publishing House of the Czechoslovak Academy of Sciences, Prague, 1966). | Zbl 0141.39401

[001] [2] W. Fontana and P. Schuster, Continuity in Evolution: On the Nature of Transitions, Science 280 (1998) 1451-1455, doi: 10.1126/science.280.5368.1451.

[002] [3] P.C. Hammer, Extended topology: Continuity. I, Portugal. Math. 23 (1964) 77-93. | Zbl 0151.29302

[003] [4] W. Imrich and S. Klavžar, Product Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, (Wiley-Interscience, New York, 2000) Structure and recognition, With a foreword by P. Winkler.

[004] [5] R. McKenzie, Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70 (1971) 59-101. | Zbl 0228.08002

[005] [6] B.M.R. Stadler and P.F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry, J. Chem. Inf. Comput. Sci. 42 (2002) 577-585, doi: 10.1021/ci0100898.

[006] [7] B.M.R. Stadler, P.F. Stadler, G. Wagner and W. Fontana, The topology of the possible: Formal spaces underlying patterns of evolutionary change, J. Theor. Biol. 213 (2001) 241-274, doi: 10.1006/jtbi.2001.2423.

[007] [8] G. Wagner and P.F. Stadler, Quasi-independence, homology and the unity of type: A topological theory of characters, J. Theor. Biol. 220 (2003) 505-527, doi: 10.1006/jtbi.2003.3150.