The use of Euler's formula in (3,1)*-list coloring
Yongqiang Zhao ; Wenjie He
Discussiones Mathematicae Graph Theory, Tome 26 (2006), p. 91-101 / Harvested from The Polish Digital Mathematics Library

A graph G is called (k,d)*-choosable if, for every list assignment L satisfying |L(v)| = k for all v ∈ V(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. Ko-Wei Lih et al. used the way of discharging to prove that every planar graph without 4-cycles and i-cycles for some i ∈ 5,6,7 is (3,1)*-choosable. In this paper, we show that if G is 2-connected, we may just use Euler’s formula and the graph’s structural properties to prove these results. Furthermore, for 2-connected planar graph G, we use the same way to prove that, if G has no 4-cycles, and the number of 5-cycles contained in G is at most 11+i5[(5i-24)/4]|Vi|, then G is (3,1)*-choosable; if G has no 5-cycles, and any planar embedding of G does not contain any adjacent 3-faces and adjacent 4-faces, then G is (3,1)*-choosable.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:270497
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1304,
     author = {Yongqiang Zhao and Wenjie He},
     title = {The use of Euler's formula in (3,1)*-list coloring},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {26},
     year = {2006},
     pages = {91-101},
     zbl = {1106.05042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1304}
}
Yongqiang Zhao; Wenjie He. The use of Euler's formula in (3,1)*-list coloring. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 91-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1304/

[000] [1] N. Eaton and T. Hull, Defective list colorings of planar graphs, Bull. of the ICA 25 (1999) 79-87. | Zbl 0916.05026

[001] [2] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125-157.

[002] [3] K. Lih, Z. Song, W. Wang and K. Zhang, A note on list improper coloring planar graphs, Appl. Math. Letters 14 (2001) 269-273, doi: 10.1016/S0893-9659(00)00147-6. | Zbl 0978.05029

[003] [4] R. Skrekovski, A grötzsch-type theorem for list colorings with impropriety one, Comb. Prob. Comp. 8 (1999) 493-507, doi: 10.1017/S096354839900396X. | Zbl 0941.05027

[004] [5] R. Skrekovski, List improper colorings of planar graphs, Comb. Prob. Comp. 8 (1999) 293-299, doi: 10.1017/S0963548399003752. | Zbl 0940.05031

[005] [6] R. Skrekovski, List improper colorings of planar graphs with prescribed girth, Discrete Math. 214 (2000) 221-233, doi: 10.1016/S0012-365X(99)00145-4. | Zbl 0940.05027

[006] [7] C. Thomassen, 3-list coloring planar graphs of girth 5, J. Combin. Theory (B) 64 (1995) 101-107, doi: 10.1006/jctb.1995.1027. | Zbl 0822.05029

[007] [8] V.G. Vizing, Vertex coloring with given colors (in Russian), Diskret. Analiz. 29 (1976) 3-10.

[008] [9] M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995) 325-328, doi: 10.1016/0012-365X(94)00180-9. | Zbl 0843.05034