A graph G is called (k,d)*-choosable if, for every list assignment L satisfying |L(v)| = k for all v ∈ V(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. Ko-Wei Lih et al. used the way of discharging to prove that every planar graph without 4-cycles and i-cycles for some i ∈ 5,6,7 is (3,1)*-choosable. In this paper, we show that if G is 2-connected, we may just use Euler’s formula and the graph’s structural properties to prove these results. Furthermore, for 2-connected planar graph G, we use the same way to prove that, if G has no 4-cycles, and the number of 5-cycles contained in G is at most , then G is (3,1)*-choosable; if G has no 5-cycles, and any planar embedding of G does not contain any adjacent 3-faces and adjacent 4-faces, then G is (3,1)*-choosable.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1304, author = {Yongqiang Zhao and Wenjie He}, title = {The use of Euler's formula in (3,1)*-list coloring}, journal = {Discussiones Mathematicae Graph Theory}, volume = {26}, year = {2006}, pages = {91-101}, zbl = {1106.05042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1304} }
Yongqiang Zhao; Wenjie He. The use of Euler's formula in (3,1)*-list coloring. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 91-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1304/
[000] [1] N. Eaton and T. Hull, Defective list colorings of planar graphs, Bull. of the ICA 25 (1999) 79-87. | Zbl 0916.05026
[001] [2] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125-157.
[002] [3] K. Lih, Z. Song, W. Wang and K. Zhang, A note on list improper coloring planar graphs, Appl. Math. Letters 14 (2001) 269-273, doi: 10.1016/S0893-9659(00)00147-6. | Zbl 0978.05029
[003] [4] R. Skrekovski, A grötzsch-type theorem for list colorings with impropriety one, Comb. Prob. Comp. 8 (1999) 493-507, doi: 10.1017/S096354839900396X. | Zbl 0941.05027
[004] [5] R. Skrekovski, List improper colorings of planar graphs, Comb. Prob. Comp. 8 (1999) 293-299, doi: 10.1017/S0963548399003752. | Zbl 0940.05031
[005] [6] R. Skrekovski, List improper colorings of planar graphs with prescribed girth, Discrete Math. 214 (2000) 221-233, doi: 10.1016/S0012-365X(99)00145-4. | Zbl 0940.05027
[006] [7] C. Thomassen, 3-list coloring planar graphs of girth 5, J. Combin. Theory (B) 64 (1995) 101-107, doi: 10.1006/jctb.1995.1027. | Zbl 0822.05029
[007] [8] V.G. Vizing, Vertex coloring with given colors (in Russian), Diskret. Analiz. 29 (1976) 3-10.
[008] [9] M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995) 325-328, doi: 10.1016/0012-365X(94)00180-9. | Zbl 0843.05034