Extension of several sufficient conditions for Hamiltonian graphs
Ahmed Ainouche
Discussiones Mathematicae Graph Theory, Tome 26 (2006), p. 23-39 / Harvested from The Polish Digital Mathematics Library

Let G be a 2-connected graph of order n. Suppose that for all 3-independent sets X in G, there exists a vertex u in X such that |N(X∖u)|+d(u) ≥ n-1. Using the concept of dual closure, we prove that 1. G is hamiltonian if and only if its 0-dual closure is either complete or the cycle C₇ 2. G is nonhamiltonian if and only if its 0-dual closure is either the graph (KrKK)K, 1 ≤ r ≤ s ≤ t or the graph ((n+1)/2)KK(n-1)/2. It follows that it takes a polynomial time to check the hamiltonicity or the nonhamiltonicity of a graph satisfying the above condition. From this main result we derive a large number of extensions of previous sufficient conditions for hamiltonian graphs. All these results are sharp.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:270300
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1298,
     author = {Ahmed Ainouche},
     title = {Extension of several sufficient conditions for Hamiltonian graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {26},
     year = {2006},
     pages = {23-39},
     zbl = {1103.05044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1298}
}
Ahmed Ainouche. Extension of several sufficient conditions for Hamiltonian graphs. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 23-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1298/

[000] [1] A. Ainouche and N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Applied Math. 17 (1987) 213-221, doi: 10.1016/0166-218X(87)90025-4.

[001] [2] A. Ainouche, A common generalization of Chvàtal-Erdös and Fraisse's sufficient conditions for hamiltonian graphs, Discrete Math. 142 (1995) 1-19, doi: 10.1016/0012-365X(94)00002-Z. | Zbl 0834.05033

[002] [3] A. Ainouche, Extensions of a closure condition: the β-closure (Rapport de Recherche CEREGMIA, 2001).

[003] [4] A. Ainouche and I. Schiermeyer, 0-dual closure for several classes of graphs, Graphs and Combinatorics 19 (2003) 297-307, doi: 10.1007/s00373-002-0523-y.

[004] [5] A. Ainouche and S. Lapiquonne, Variations on a strong sufficient condition for hamiltonian graphs, submitted.

[005] [6] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Dept. of Combinatorics and Optimization, University of Waterloo, Ont. Canada.

[006] [7] J.A. Bondy and V. Chvàtal, A method in graph theory, Discrete Math. 15 (1976) 111-135, doi: 10.1016/0012-365X(76)90078-9. | Zbl 0331.05138

[007] [8] G. Chen, One sufficient condition for Hamiltonian Graphs, J. Graph Theory 14 (1990) 501-508, doi: 10.1002/jgt.3190140414. | Zbl 0721.05043

[008] [9] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69. | Zbl 0047.17001

[009] [10] R.J. Faudree, R.J. Gould, M.S. Jacobson and L.S. Lesniak, Neighborhood unions and highly Hamiltonian Graphs, Ars Combin. 31 (1991) 139-148. | Zbl 0739.05056

[010] [11] R.J. Faudree, R.J. Gould, M.S. Jacobson and R.H. Shelp, Neighborhood unions and Hamiltonian properties in Graphs, J. Combin. Theory (B) 47 (1989) 1-9, doi: 10.1016/0095-8956(89)90060-9.

[011] [12] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degrees sums and neighborhood intersections, Discrete Math. 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I. | Zbl 0746.05038

[012] [13] P. Fraisse, A new sufficient condition for Hamiltonian Graphs, J. Graph Theory 10 (1986) 405-409, doi: 10.1002/jgt.3190100316. | Zbl 0606.05043

[013] [14] T. Feng, A note on the paper A new sufficient condition for hamiltonian graph, Systems Sci. Math. Sci. 5 (1992) 81-83. | Zbl 0774.05061

[014] [15] I. Schiermeyer, Computation of the 0-dual closure for hamiltonian graphs, Discrete Math. 111 (1993) 455-464, doi: 10.1016/0012-365X(93)90183-T. | Zbl 0789.05060

[015] [16] O. Ore, Note on Hamiltonian circuits, Am. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.