Let G = (V(G), E(G)) be a connected multigraph and let h(G) be the minimum integer k such that for every edge-colouring of G, using exactly k colours, there is at least one edge-cut of G all of whose edges receive different colours. In this note it is proved that if G has at least 2 vertices and has no bridges, then h(G) = |E(G)| -|V(G)| + 2.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1297, author = {Juan Jos\'e Montellano-Ballesteros}, title = {An anti-Ramsey theorem on edge-cuts}, journal = {Discussiones Mathematicae Graph Theory}, volume = {26}, year = {2006}, pages = {19-21}, zbl = {1107.05037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1297} }
Juan José Montellano-Ballesteros. An anti-Ramsey theorem on edge-cuts. Discussiones Mathematicae Graph Theory, Tome 26 (2006) pp. 19-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1297/
[000] [1] N. Alon, On a Conjecture of Erdös, Simonovits and Sós Concerning Anti-Ramsey Theorems, J. Graph Theory 7 (1983) 91-94, doi: 10.1002/jgt.3190070112. | Zbl 0456.05038
[001] [2] P. Erdös, M. Simonovits and V.T. Sós, Anti-Ramsey Theorems, in: Infinite and finite sets (Keszthely, Hungary 1973), Colloquia Mathematica Societatis János Bolyai, 10, (North-Holland, Amsterdam, 1975) 633-643.
[002] [3] P. Hell and J.J. Montellano-Ballesteros, Polychromatic Cliques, Discrete Math. 285 (2004) 319-322, doi: 10.1016/j.disc.2004.02.013. | Zbl 1044.05051
[003] [4] T. Jiang, Edge-colorings with no Large Polychromatic Stars, Graphs and Combinatorics 18 (2002) 303-308, doi: 10.1007/s003730200022. | Zbl 0991.05044
[004] [5] J.J. Montellano-Ballesteros, On Totally Multicolored Stars, to appear J. Graph Theory.
[005] [6] J.J. Montellano-Ballesteros and V. Neumann-Lara, An Anti-Ramsey Theorem, Combinatorica 22 (2002) 445-449, doi: 10.1007/s004930200023.
[006] [7] M. Simonovits and V.T. Sós, On Restricted Colourings of Kₙ, Combinatorica 4 (1984) 101-110, doi: 10.1007/BF02579162. | Zbl 0538.05047
[007] [8] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932) 339-362, doi: 10.1090/S0002-9947-1932-1501641-2. | Zbl 58.0608.01