Highly connected counterexamples to a conjecture on α-domination
Zsolt Tuza
Discussiones Mathematicae Graph Theory, Tome 25 (2005), p. 435-440 / Harvested from The Polish Digital Mathematics Library

An infinite class of counterexamples is given to a conjecture of Dahme et al. [1] concerning the minimum size of a dominating vertex set that contains at least a prescribed proportion of the neighbors of each vertex not belonging to the set.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:270229
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1295,
     author = {Zsolt Tuza},
     title = {Highly connected counterexamples to a conjecture on $\alpha$-domination},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {25},
     year = {2005},
     pages = {435-440},
     zbl = {1102.05044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1295}
}
Zsolt Tuza. Highly connected counterexamples to a conjecture on α-domination. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 435-440. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1295/

[000] [1] F. Dahme, D. Rautenbach and L. Volkmann, Some remarks on α-domination, Discuss. Math. Graph Theory 24 (2004) 423-430, doi: 10.7151/dmgt.1241. | Zbl 1068.05051

[001] [2] J.E. Dunbar, D.G, Hoffman, R.C. Laskar and L.R. Markus, α-domination, Discrete Math. 211 (2000) 11-26, doi: 10.1016/S0012-365X(99)00131-4.

[002] [3] D.R. Woodall, Improper colourings of graphs, Pitman Res. Notes Math. Ser. 218 (1988) 45-63.