On a sphere of influence graph in a one-dimensional space
Zbigniew Palka ; Monika Sperling
Discussiones Mathematicae Graph Theory, Tome 25 (2005), p. 427-433 / Harvested from The Polish Digital Mathematics Library

A sphere of influence graph generated by a finite population of generated points on the real line by a Poisson process is considered. We determine the expected number and variance of societies formed by population of n points in a one-dimensional space.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:270198
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1294,
     author = {Zbigniew Palka and Monika Sperling},
     title = {On a sphere of influence graph in a one-dimensional space},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {25},
     year = {2005},
     pages = {427-433},
     zbl = {1101.60007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1294}
}
Zbigniew Palka; Monika Sperling. On a sphere of influence graph in a one-dimensional space. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 427-433. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1294/

[000] [1] P. Avis and J. Horton, Remarks on the sphere of influence graph, in: ed. J.E. Goodman, et al. Discrete Geometry and Convexity (New York Academy of Science, New York) 323-327. | Zbl 0573.52013

[001] [2] T. Chalker, A. Godbole, P. Hitczenko, J. Radcliff and O. Ruehr, On the size of a random sphere of influence graph, Adv. in Appl. Probab. 31 (1999) 596-609, doi: 10.1239/aap/1029955193. | Zbl 0944.60019

[002] [3] E.G. Enns, P.F. Ehlers and T. Misi, A cluster problem as defined by nearest neighbours, The Canadian Journal of Statistics 27 (1999) 843-851, doi: 10.2307/3316135. | Zbl 0949.60030

[003] [4] Z. Furedi, The expected size of a random sphere of influence graph, Intuitive Geometry, Bolyai Math. Soc. 6 (1995) 319-326. | Zbl 0881.05113

[004] [5] Z. Furedi and P.A. Loeb, On the best constant on the Besicovitch covering theorem, in: Proc. Coll. Math. Soc. J. Bolyai 63 (1994) 1063-1073. | Zbl 0802.28002

[005] [6] P. Hitczenko, S. Janson and J.E. Yukich, On the variance of the random sphere of influence graph, Random Struct. Alg. 14 (1999) 139-152, doi: 10.1002/(SICI)1098-2418(199903)14:2<139::AID-RSA2>3.0.CO;2-E | Zbl 0922.60025

[006] [7] L. Guibas, J. Pach and M. Sharir, Sphere of influence graphs in higher dimensions, in: Proc. Coll. Math. Soc. J. Bolyai 63 (1994) 131-137. | Zbl 0821.52003

[007] [8] T.S. Michael and T. Quint, Sphere of influence graphs: a survey, Congr. Numer. 105 (1994) 153-160. | Zbl 0835.05078

[008] [9] T.S. Michael and T. Quint, Sphere of influence graphs and the L_∞-metric, Discrete Appl. Math. 127 (2003) 447-460, doi: 10.1016/S0166-218X(02)00246-9. | Zbl 1018.05094

[009] [10] Toussaint, Pattern recognition of geometric complexity, in: Proceedings of the 5th Int. Conference on Pattern Recognition, (1980) 1324-1347.

[010] [11] D. Warren and E. Seneta, Peaks and eulerian numbers in a random sequence, J. Appl. Prob. 33 (1996) 101-114, doi: 10.2307/3215267. | Zbl 0845.60035