Let p be a positive integer and G = (V,E) a graph. A subset S of V is a p-dominating set if every vertex of V-S is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number γₚ(G). It is proved for a cactus graph G that γₚ(G) ⩽ (|V| + |Lₚ(G)| + c(G))/2, for every positive integer p ⩾ 2, where Lₚ(G) is the set of vertices of G of degree at most p-1 and c(G) is the number of odd cycles in G.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1288, author = {Mostafa Blidia and Mustapha Chellali and Lutz Volkmann}, title = {On the p-domination number of cactus graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {25}, year = {2005}, pages = {355-361}, zbl = {1121.05083}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1288} }
Mostafa Blidia; Mustapha Chellali; Lutz Volkmann. On the p-domination number of cactus graphs. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 355-361. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1288/
[000] [1] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, submitted for publication. | Zbl 1100.05069
[001] [2] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300. | Zbl 0573.05049
[002] [3] J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 301-312.
[003] [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). | Zbl 0883.00011