Some bipartite Hamilton decomposable graphs that are regular of degree δ ≡ 2 (mod 4) are shown to have Hamilton decomposable line graphs. One consequence is that every bipartite Hamilton decomposable graph G with connectivity κ(G) = 2 has a Hamilton decomposable line graph L(G).
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1283, author = {David A. Pike}, title = {Hamilton decompositions of line graphs of some bipartite graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {25}, year = {2005}, pages = {303-310}, zbl = {1106.05077}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1283} }
David A. Pike. Hamilton decompositions of line graphs of some bipartite graphs. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 303-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1283/
[000] [1] J.C. Bermond, Problem 97, Discrete Math. 71 (1988) 275, doi: 10.1016/0012-365X(88)90107-0.
[001] [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland Publishing Company, New York, 1979). | Zbl 1226.05083
[002] [3] K. Heinrich and H. Verrall, A Construction of a perfect set of Euler tours of , J. Combin. Designs 5 (1997) 215-230, doi: 10.1002/(SICI)1520-6610(1997)5:3<215::AID-JCD5>3.0.CO;2-I | Zbl 0914.05047
[003] [4] F. Jaeger, The 1-factorization of some line-graphs, Discrete Math. 46 (1983) 89-92, doi: 10.1016/0012-365X(83)90274-1. | Zbl 0523.05054
[004] [5] A. Kotzig, Z teorie konecných pravidelných grafov tretieho a stvrtého stupna, Casopis Pest. Mat. 82 (1957) 76-92.
[005] [6] P. Martin, Cycles Hamiltoniens dans les graphes 4-réguliers 4-connexes, Aequationes Math. 14 (1976) 37-40, doi: 10.1007/BF01836203. | Zbl 0328.05118
[006] [7] A. Muthusamy and P. Paulraja, Hamilton cycle decompositions of line graphs and a conjecture of Bermond, J. Combin. Theory (B) 64 (1995) 1-16, doi: 10.1006/jctb.1995.1024. | Zbl 0831.05056
[007] [8] B.R. Myers, Hamiltonian factorization of the product of a complete graph with itself, Networks 2 (1972) 1-9, doi: 10.1002/net.3230020102. | Zbl 0241.94037
[008] [9] D.A. Pike, Hamilton decompositions of some line graphs, J. Graph Theory 20 (1995) 473-479, doi: 10.1002/jgt.3190200411. | Zbl 0921.05049
[009] [10] D.A. Pike, Hamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree, Australasian J. Combin. 12 (1995) 291-294. | Zbl 0844.05073
[010] [11] H. Verrall, A Construction of a perfect set of Euler tours of , J. Combin. Designs 6 (1998) 183-211, doi: 10.1002/(SICI)1520-6610(1998)6:3<183::AID-JCD2>3.0.CO;2-B | Zbl 0911.05047
[011] [12] S. Zhan, Circuits and Cycle Decompositions (Ph.D. thesis, Simon Fraser University, 1992).