Domination and leaf density in graphs
Anders Sune Pedersen
Discussiones Mathematicae Graph Theory, Tome 25 (2005), p. 251-259 / Harvested from The Polish Digital Mathematics Library

The domination number γ(G) of a graph G is the minimum cardinality of a subset D of V(G) with the property that each vertex of V(G)-D is adjacent to at least one vertex of D. For a graph G with n vertices we define ε(G) to be the number of leaves in G minus the number of stems in G, and we define the leaf density ζ(G) to equal ε(G)/n. We prove that for any graph G with no isolated vertex, γ(G) ≤ n(1- ζ(G))/2 and we characterize the extremal graphs for this bound. Similar results are obtained for the total domination number and the partition domination number.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:270202
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1278,
     author = {Anders Sune Pedersen},
     title = {Domination and leaf density in graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {25},
     year = {2005},
     pages = {251-259},
     zbl = {1103.05063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1278}
}
Anders Sune Pedersen. Domination and leaf density in graphs. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 251-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1278/

[000] [1] R.C. Brigham, J.R. Carrington and R.P. Vitray, Connected graphs with maximum total domination number, J. Combin. Math. Combin. Comput. 34 (2000) 81-95. | Zbl 0958.05100

[001] [2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304. | Zbl 0447.05039

[002] [3] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079. | Zbl 0602.05043

[003] [4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness (Freeman, New York, 1979). | Zbl 0411.68039

[004] [5] B.L. Hartnell and P.D. Vestergaard, Partitions and domination in a graph, J. Combin. Math. Combin. Comput. 46 (2003) 113-128. | Zbl 1036.05039

[005] [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, Inc., 1998). | Zbl 0890.05002

[006] [7] A.M. Henning and P.D. Vestergaard, Domination in partitioned graphs with minimum degree two (Manuscript, 2002). | Zbl 1113.05077

[007] [8] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ., 1962).

[008] [9] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104. | Zbl 0489.05049

[009] [10] S.M. Seager, Partition dominations of graphs of minimum degree 2, Congr. Numer. 132 (1998) 85-91. | Zbl 0951.05079

[010] [11] Z. Tuza and P.D. Vestergaard, Domination in partitioned graphs, Discuss. Math. Graph Theory 22 (2002) 199-210, doi: 10.7151/dmgt.1169. | Zbl 1016.05057