An odd dominating set of a simple, undirected graph G = (V,E) is a set of vertices D ⊆ V such that |N[v] ∩ D| ≡ 1 mod 2 for all vertices v ∈ V. It is known that every graph has an odd dominating set. In this paper we consider the concept of connected odd dominating sets. We prove that the problem of deciding if a graph has a connected odd dominating set is NP-complete. We also determine the existence or non-existence of such sets in several classes of graphs. Among other results, we prove there are only 15 grid graphs that have a connected odd dominating set.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1276, author = {Yair Caro and William F. Klostermeyer and Raphael Yuster}, title = {Connected odd dominating sets in graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {25}, year = {2005}, pages = {225-239}, zbl = {1103.05058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1276} }
Yair Caro; William F. Klostermeyer; Raphael Yuster. Connected odd dominating sets in graphs. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 225-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1276/
[000] [1] A. Amin, L. Clark and P. Slater, Parity dimension for graphs, Discrete Math. 187 (1998) 1-17, doi: 10.1016/S0012-365X(97)00242-2. | Zbl 0957.05058
[001] [2] A. Amin and P. Slater, Neighborhood domination with parity restriction in graphs, Congr. Numer. 91 (1992) 19-30. | Zbl 0798.68135
[002] [3] A. Amin and P. Slater, All parity realizable trees, J. Combin. Math. and Combin. Comput. 20 (1996) 53-63. | Zbl 0845.05029
[003] [4] Y. Caro, Simple proofs to three parity theorems, Ars Combin. 42 (1996) 175-180.
[004] [5] Y. Caro and W. Klostermeyer, The odd domination number of a graph, J. Combin. Math. Combin. Comput. 44 (2003) 65-84. | Zbl 1020.05047
[005] [6] Y. Caro, W. Klostermeyer and J. Goldwasser, Odd and residue domination numbers of a graph, Discuss. Math. Graph Theory 21 (2001) 119-136, doi: 10.7151/dmgt.1137. | Zbl 0991.05080
[006] [7] M. Conlon, M. Falidas, M. Forde, J. Kennedy, S. McIlwaine and J. Stern, Inversion numbers of graphs, Graph Theory Notes of New York XXXVII (1999) 43-49.
[007] [8] R. Cowen, S. Hechler, J. Kennedy and A. Ryba, Inversion and neighborhood inversion in graphs, Graph Theory Notes of New York XXXVII (1999) 38-42.
[008] [9] J. Goldwasser, W. Klostermeyer and G. Trapp, Characterizing switch-setting problems, Linear and Multilinear Algebra 43 (1997) 121-135, doi: 10.1080/03081089708818520. | Zbl 0890.15004
[009] [10] J. Goldwasser and W. Klostermeyer, Maximization versions of 'Lights Out' games in grids and graphs, Congr. Numer. 126 (1997) 99-111. | Zbl 0897.05048
[010] [11] J. Goldwasser, W. Klostermeyer and H. Ware, Fibonacci polynomials and parity domination in grid graphs, Graphs and Combinatorics 18 (2002) 271-283, doi: 10.1007/s003730200020. | Zbl 0999.05079
[011] [12] M. Halldorsson, J. Kratochvil and J. Telle, Mod-2 independence and domination in graphs, in: Proceedings Workshop on Graph-Theoretic Concepts in Computer Science '99, Ascona, Switzerland (Springer-Verlag, Lecture Notes in Computer Science, 1999) 101-109. | Zbl 0943.05081
[012] [13] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[013] [14] K. Sutner, Linear cellular automata and the Garden-of-Eden, The Mathematical Intelligencer 11 (2) (1989) 49-53, doi: 10.1007/BF03023823. | Zbl 0770.68094