Median graphs are characterized among direct products of graphs on at least three vertices. Beside some trivial cases, it is shown that one component of G×P₃ is median if and only if G is a tree in that the distance between any two vertices of degree at least 3 is even. In addition, some partial results considering median graphs of the form G×K₂ are proved, and it is shown that the only nonbipartite quasi-median direct product is K₃×K₃.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1271, author = {Bo\v stjan Bre\v sar and Pranava K. Jha and Sandi Klav\v zar and Bla\v z Zmazek}, title = {Median and quasi-median direct products of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {25}, year = {2005}, pages = {183-196}, zbl = {1079.05082}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1271} }
Boštjan Brešar; Pranava K. Jha; Sandi Klavžar; Blaž Zmazek. Median and quasi-median direct products of graphs. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 183-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1271/
[000] [1] G. Abay-Asmerom and R. Hammack, Centers of tensor products of graphs, Ars Combin., to appear. | Zbl 1081.05090
[001] [2] H.-J. Bandelt, Retracts of hypercubes, J. Graph Theory 8 (1984) 501-510, doi: 10.1002/jgt.3190080407. | Zbl 0551.05060
[002] [3] H.-J. Bandelt, G. Burosch and J.-M. Laborde, Cartesian products of trees and paths, J. Graph Theory 22 (1996) 347-356, doi: 10.1002/(SICI)1097-0118(199608)22:4<347::AID-JGT8>3.0.CO;2-L | Zbl 0857.05079
[003] [4] H.-J. Bandelt, H.M. Mulder and E. Wilkeit, Quasi-median graphs and algebras, J. Graph Theory 18 (1994) 681-703, doi: 10.1002/jgt.3190180705. | Zbl 0810.05057
[004] [5] B. Brešar, W. Imrich and S. Klavžar, Tree-like isometric subgraphs of hypercubes, Discuss. Math. Graph Theory 23 (2003) 227-240, doi: 10.7151/dmgt.1199. | Zbl 1055.05129
[005] [6] B. Brešar, S. Klavžar and R. Skrekovski, Quasi-median graphs, their generalizations, and tree-like equalities, European J. Combin. 24 (2003) 557-572, doi: 10.1016/S0195-6698(03)00045-3. | Zbl 1022.05070
[006] [7] M. Deza and M. Laurent, Geometry of Cuts and Metrics (Springer-Verlag, Berlin, 1997). | Zbl 0885.52001
[007] [8] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory (B) 14 (1973) 263-267, doi: 10.1016/0095-8956(73)90010-5. | Zbl 0245.05113
[008] [9] J. Hagauer and S. Klavžar, Clique-gated graphs, Discrete Math. 161 (1996) 143-149, doi: 10.1016/0012-365X(95)00280-A. | Zbl 0869.05054
[009] [10] W. Imrich, Factoring cardinal product graphs in polynomial time, Discrete Math. 192 (1998) 119-144, doi: 10.1016/S0012-365X(98)00069-7. | Zbl 0955.68089
[010] [11] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).
[011] [12] P.K. Jha, S. Klavžar and B. Zmazek, Isomorphic components of Kronecker products of bipartite graphs, Discuss. Math. Graph Theory 17 (1997) 301-309, doi: 10.7151/dmgt.1057. | Zbl 0906.05050
[012] [13] S.-R. Kim, Centers of a tensor composite graph, in: Proceedings of the Twenty-second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991), Congr. Numer. 81 (1991) 193-203. | Zbl 0765.05093
[013] [14] S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127. | Zbl 0931.05072
[014] [15] S. Klavžar and R. Skrekovski, On median graphs and median grid graphs, Discrete Math. 219 (2000) 287-293, doi: 10.1016/S0012-365X(00)00085-6. | Zbl 0953.05065
[015] [16] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204, doi: 10.1016/0012-365X(78)90199-1. | Zbl 0394.05038
[016] [17] H.M. Mulder, The Interval Function of a Graph (Mathematisch Centrum, Amsterdam, 1980). | Zbl 0446.05039
[017] [18] C. Tardif, On compact median graphs, J. Graph Theory 23 (1996) 325-336, doi: 10.1002/(SICI)1097-0118(199612)23:4<325::AID-JGT1>3.0.CO;2-T | Zbl 0863.05068
[018] [19] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52, doi: 10.1090/S0002-9939-1962-0133816-6. | Zbl 0102.38801
[019] [20] P.M. Winkler, Isometric embedding in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225, doi: 10.1016/0166-218X(84)90069-6. | Zbl 0529.05055