Families of all sets of independent vertices in graphs are investigated. The problem how to characterize those infinite graphs which have arithmetically maximal independent sets is posed. A positive answer is given to the following classes of infinite graphs: bipartite graphs, line graphs and graphs having locally infinite clique-cover of vertices. Some counter examples are presented.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1270, author = {Stanis\l aw Bylka}, title = {Arithmetically maximal independent sets in infinite graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {25}, year = {2005}, pages = {167-182}, zbl = {1077.05070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1270} }
Stanisław Bylka. Arithmetically maximal independent sets in infinite graphs. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 167-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1270/
[000] [1] R. Aharoni, König's duality theorem for infinite bipartite graphs, J. London Math. Society 29 (1984) 1-12, doi: 10.1112/jlms/s2-29.1.1. | Zbl 0505.05049
[001] [2] J.C. Bermond and J.C. Meyer, Graphe représentatif des aretes d'un multigraphe, J. Math. Pures Appl. 52 (1973) 229-308. | Zbl 0219.05078
[002] [3] Y. Caro and Z. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107, doi: 10.1002/jgt.3190150110. | Zbl 0753.68079
[003] [4] M.J. Jou and G.J. Chang, Algorithmic aspects of counting independent sets, Ars Combinatoria 65 (2002) 265-277. | Zbl 1071.05576
[004] [5] J. Komar and J. Łoś, König's theorem in the infinite case, Proc. of III Symp. on Operat. Res., Mannheim (1978) 153-155. | Zbl 0398.90069
[005] [6] C.St.J.A. Nash-Williams, Infinite graphs - a survey, J. Combin. Theory 3 (1967) 286-301, doi: 10.1016/S0021-9800(67)80077-2. | Zbl 0153.25801
[006] [7] K.P. Podewski and K. Steffens, Injective choice functions for countable families, J. Combin. Theory (B) 21 (1976) 40-46, doi: 10.1016/0095-8956(76)90025-3. | Zbl 0357.04017
[007] [8] K. Steffens, Matching in countable graphs, Can. J. Math. 29 (1976) 165-168, doi: 10.4153/CJM-1977-016-8. | Zbl 0324.05122
[008] [9] J. Zito, The structure and maximum number of maximum independent sets in trees, J. Graph Theory 15 (1991) 207-221, doi: 10.1002/jgt.3190150208. | Zbl 0764.05082