Motivated by the frequency assignment problem we study the d-distant coloring of the vertices of an infinite plane hexagonal lattice H. Let d be a positive integer. A d-distant coloring of the lattice H is a coloring of the vertices of H such that each pair of vertices distance at most d apart have different colors. The d-distant chromatic number of H, denoted , is the minimum number of colors needed for a d-distant coloring of H. We give the exact value of for any d odd and estimations for any d even.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1269, author = {Peter Jacko and Stanislav Jendrol'}, title = {Distance coloring of the hexagonal lattice}, journal = {Discussiones Mathematicae Graph Theory}, volume = {25}, year = {2005}, pages = {151-166}, zbl = {1074.05035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1269} }
Peter Jacko; Stanislav Jendrol'. Distance coloring of the hexagonal lattice. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 151-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1269/
[000] [1] G.J. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309-316, doi: 10.1137/S0895480193245339. | Zbl 0860.05064
[001] [2] G. Fertin, E. Godard and A. Raspaud, Acyclic and k-distance coloring of the grid, Information Processing Letters 87 (2003) 51-58, doi: 10.1016/S0020-0190(03)00232-1. | Zbl 1175.68293
[002] [3] J.P. Georges and D.M. Mauro, Generalized vertex labelings with a condition at distance two, Congr. Numer. 109 (1995) 141-159. | Zbl 0904.05077
[003] [4] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586-595, doi: 10.1137/0405048. | Zbl 0767.05080
[004] [5] W.K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980) 1497-1514, doi: 10.1109/PROC.1980.11899.
[005] [6] J. van den Heuvel, R.A. Leese and M.A. Shepherd, Graph labeling and radio Channel assignment, J. Graph Theory 29 (1998) 263-283, doi: 10.1002/(SICI)1097-0118(199812)29:4<263::AID-JGT5>3.0.CO;2-V | Zbl 0930.05087
[006] [7] J. van den Heuvel and S. McGuinness, Coloring the square of a planar graph, J. Graph Theory 42 (2003) 110-124, doi: 10.1002/jgt.10077. | Zbl 1008.05065
[007] [8] S. Jendrol' and Z. Skupień, Local structures in plane maps and distance colourings, Discrete Math. 236 (2001) 167-177, doi: 10.1016/S0012-365X(00)00440-4. | Zbl 0990.05043
[008] [9] T.R. Jensen and B. Toft, Graph Coloring Problems (John-Wiley & Sons, New York, 1995). | Zbl 0855.05054
[009] [10] F. Kramer and H. Kramer, Ein farbungsproblem der knotenpunkte eines graphen bezuglich der distanz, P. Rev. Roumaine Math. Pures Appl. 14 (1969) 1031-1038. | Zbl 0194.25201
[010] [11] V.H. MacDonald, The cellular concept, Bell System Technical Journal 58 (1979) 15-41.
[011] [12] C. McDiarmid and B. Reed, Colouring proximity graphs in the plane, Discrete Math. 199 (1999) 123-137, doi: 10.1016/S0012-365X(98)00292-1. | Zbl 0924.05024
[012] [13] A. Sevcíková, Distant Chromatic Number of the Planar Graphs (Manuscript, P.J. Šafárik University, 2001).
[013] [14] G. Wegner, Graphs with given Diameter and a Colouring Problem (Preprint, University of Dortmund, 1977).