Graph domination in distance two
Gábor Bacsó ; Attila Tálos ; Zsolt Tuza
Discussiones Mathematicae Graph Theory, Tome 25 (2005), p. 121-128 / Harvested from The Polish Digital Mathematics Library

Let G = (V,E) be a graph, and k ≥ 1 an integer. A subgraph D is said to be k-dominating in G if every vertex of G-D is at distance at most k from some vertex of D. For a given class of graphs, Domₖ is the set of those graphs G in which every connected induced subgraph H has some k-dominating induced subgraph D ∈ which is also connected. In our notation, Dom coincides with Dom₁. In this paper we prove that DomDomu=Domu holds for u = all connected graphs without induced Pu (u ≥ 2). (In particular, ₂ = K₁ and ₃ = all complete graphs.) Some negative examples are also given.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:270765
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1266,
     author = {G\'abor Bacs\'o and Attila T\'alos and Zsolt Tuza},
     title = {Graph domination in distance two},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {25},
     year = {2005},
     pages = {121-128},
     zbl = {1076.05057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1266}
}
Gábor Bacsó; Attila Tálos; Zsolt Tuza. Graph domination in distance two. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 121-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1266/

[000] [1] G. Bacsó and Zs. Tuza, A characterization of graphs without long induced paths, J. Graph Theory 14 (1990) 455-464, doi: 10.1002/jgt.3190140409.

[001] [2] G. Bacsó and Zs. Tuza, Dominating cliques in P₅-free graphs, Periodica Math. Hungar. 21 (1990) 303-308, doi: 10.1007/BF02352694.

[002] [3] G. Bacsó and Zs. Tuza, Domination properties and induced subgraphs, Discrete Math. 1 (1993) 37-40.

[003] [4] G. Bacsó and Zs. Tuza, Dominating subgraphs of small diameter, J. Combin. Inf. Syst. Sci. 22 (1997) 51-62.

[004] [5] G. Bacsó and Zs. Tuza, Structural domination in graphs, Ars Combinatoria 63 (2002) 235-256.

[005] [6] M.B. Cozzens and L.L. Kelleher, Dominating cliques in graphs, pp. 101-116 in [10]. | Zbl 0729.05043

[006] [7] P. Erdős, M. Saks and V.T. Sós Maximum induced trees in graphs, J. Combin. Theory (B) 41 (1986) 61-79, doi: 10.1016/0095-8956(86)90028-6. | Zbl 0603.05023

[007] [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, N.Y., 1998). | Zbl 0890.05002

[008] [9] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Nath. Soc. 3 (1962) 789-795, doi: 10.1090/S0002-9939-1962-0172273-0. | Zbl 0109.16402

[009] [10] - Topics on Domination (R. Laskar and S. Hedetniemi, eds.), Annals of Discrete Math. 86 (1990).