On (k,l)-kernel perfectness of special classes of digraphs
Magdalena Kucharska
Discussiones Mathematicae Graph Theory, Tome 25 (2005), p. 103-119 / Harvested from The Polish Digital Mathematics Library

In the first part of this paper we give necessary and sufficient conditions for some special classes of digraphs to have a (k,l)-kernel. One of them is the duplication of a set of vertices in a digraph. This duplication come into being as the generalization of the duplication of a vertex in a graph (see [4]). Another one is the D-join of a digraph D and a sequence α of nonempty pairwise disjoint digraphs. In the second part we prove theorems, which give necessary and sufficient conditions for special digraphs presented in the first part to be (k,l)-kernel-perfect digraphs. The concept of a (k,l)-kernel-perfect digraph is the generalization of the well-know idea of a kernel perfect digraph, which was considered in [1] and [6].

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:270648
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1265,
     author = {Magdalena Kucharska},
     title = {On (k,l)-kernel perfectness of special classes of digraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {25},
     year = {2005},
     pages = {103-119},
     zbl = {1074.05043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1265}
}
Magdalena Kucharska. On (k,l)-kernel perfectness of special classes of digraphs. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 103-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1265/

[000] [1] C. Berge and P. Duchet, Perfect graphs and kernels, Bulletin of the Institute of Mathematics Academia Sinica 16 (1988) 263-274. | Zbl 0669.05037

[001] [2] M. Blidia, P. Duchet, H. Jacob, F. Maffray and H. Meyniel, Some operations preserving the existence of kernels, Discrete Math. 205 (1999) 211-216, doi: 10.1016/S0012-365X(99)00026-6. | Zbl 0936.05047

[002] [3] M. Borowiecki and A. Szelecka, One-factorizations of the generalized Cartesian product and of the X-join of regular graphs, Discuss. Math. Graph Theory 13 (1993) 15-19. | Zbl 0794.05099

[003] [4] M. Burlet and J. Uhry, Parity graphs, Annals of Discrete Math. 21 (1984) 253-277 | Zbl 0558.05036

[004] [5] R. Diestel, Graph Theory (Springer-Verlag New-York, Inc., 1997).

[005] [6] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-85, doi: 10.1002/jgt.3190110112. | Zbl 0607.05036

[006] [7] H. Galeana-Sánchez, On the existence of (k,l)-kernels in digraphs, Discrete Math. 85 (1990) 99-102, doi: 10.1016/0012-365X(90)90167-G. | Zbl 0729.05020

[007] [8] H. Galeana-Sánchez, On the existence of kernels and h-kernels in directed graphs, Discrete Math. 110 (1992) 251-255, doi: 10.1016/0012-365X(92)90713-P.

[008] [9] H. Galeana-Sanchez and V. Neumann-Lara, On the dichromatic number in kernel theory, Math. Slovaca 48 (1998) 213-219. | Zbl 0937.05048

[009] [10] H. Jacob, Etude theórique du noyau d' un graphe (Thèse, Univesitè Pierre et Marie Curie, Paris VI, 1979).

[010] [11] M. Kucharska, On (k,l)-kernels of orientations of special graphs, Ars Combin. 60 (2001) 137-147. | Zbl 1068.05504

[011] [12] M. Kucharska and M. Kwaśnik, On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ, Discuss. Math. Graph Theory 21 (2001) 95-109, doi: 10.7151/dmgt.1135.

[012] [13] M. Kwaśnik, On (k,l)-kernels in graphs and their products (PhD Thesis, Technical University of Wrocław, Wrocław, 1980).

[013] [14] A. Włoch and I. Włoch, On (k,l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301, doi: 10.1016/S0012-365X(96)00064-7.