We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1264, author = {Adam Idzik and Konstanty Junosza-Szaniawski}, title = {Combinatorial lemmas for polyhedrons}, journal = {Discussiones Mathematicae Graph Theory}, volume = {25}, year = {2005}, pages = {95-102}, zbl = {1075.52502}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1264} }
Adam Idzik; Konstanty Junosza-Szaniawski. Combinatorial lemmas for polyhedrons. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 95-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1264/
[000] [1] T. Ichiishi and A. Idzik, Closed coverings of convex polyhedra, Internat. J. Game Theory 20 (1991) 161-169, doi: 10.1007/BF01240276. | Zbl 0761.52010
[001] [2] T. Ichiishi and A. Idzik, Equitable allocation of divisible goods, J. Math. Econom. 32 (1998) 389-400, doi: 10.1016/S0304-4068(98)00053-6. | Zbl 1016.91067
[002] [3] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387-398. | Zbl 1038.05010
[003] [4] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes für n-dimensionale simplexe, Fund. Math. 14 (1929) 132-137. | Zbl 55.0972.01
[004] [5] W. Kulpa, Poincaré and domain invariance theorem, Acta Univ. Carolinae - Mathematica et Physica 39 (1998) 127-136. | Zbl 1007.54040
[005] [6] G. van der Laan, D. Talman and Z. Yang, Intersection theorems on polytypes, Math. Programming 84 (1999) 333-352.
[006] [7] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) 96 (2001) 25-38, doi: 10.1006/jcta.2001.3178. | Zbl 1091.52007
[007] [8] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming (New York: Academic Press, 1973) 261-290. | Zbl 0267.90100
[008] [9] E. Sperner, Neuer beweis für die invarianz der dimensionszahl und des gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265-272, doi: 10.1007/BF02940617. | Zbl 54.0614.01