Multicolor Ramsey numbers for paths and cycles
Tomasz Dzido
Discussiones Mathematicae Graph Theory, Tome 25 (2005), p. 57-65 / Harvested from The Polish Digital Mathematics Library

For given graphs G₁,G₂,...,Gₖ, k ≥ 2, the multicolor Ramsey number R(G₁,G₂,...,Gₖ) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cₘ,Cₘ,...,Cₘ), where m ≥ 8 is even and Cₘ is the cycle on m vertices. In addition, we provide exact values for Ramsey numbers R(P₃,Cₘ,Cₚ), where P₃ is the path on 3 vertices, and several values for R(Pₗ,Pₘ,Cₚ), where l,m,p ≥ 2. In this paper we present new results in this field as well as some interesting conjectures.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:270242
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1260,
     author = {Tomasz Dzido},
     title = {Multicolor Ramsey numbers for paths and cycles},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {25},
     year = {2005},
     pages = {57-65},
     zbl = {1075.05055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1260}
}
Tomasz Dzido. Multicolor Ramsey numbers for paths and cycles. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 57-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1260/

[000] [1] J. Arste, K. Klamroth and I. Mengersen, Three color Ramsey numbers for small graphs, Utilitas Mathematica 49 (1996) 85-96. | Zbl 0854.05077

[001] [2] J.A. Bondy and P. Erdös, Ramsey numbers for cycles in graphs, J. Combin. Theory (B) 14 (1973) 46-54, doi: 10.1016/S0095-8956(73)80005-X. | Zbl 0248.05127

[002] [3] A. Burr and P. Erdös, Generalizations of a Ramsey-theoretic result of Chvatal, J. Graph Theory 7 (1983) 39-51, doi: 10.1002/jgt.3190070106. | Zbl 0513.05040

[003] [4] C. Clapham, The Ramsey number R(C₄,C₄,C₄), Periodica Mathematica Hungarica 18 (1987) 317-318, doi: 10.1007/BF01848105.

[004] [5] T. Dzido, Computer experience from calculating some 3-color Ramsey numbers (Technical Report of Gdańsk University of Technology ETI Faculty, 2003).

[005] [6] R. Faudree, A. Schelten and I. Schiermeyer, The Ramsey number R(C₇,C₇,C₇), Discuss. Math. Graph Theory 23 (2003) 141-158, doi: 10.7151/dmgt.1191.

[006] [7] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canadian J. Math. 7 (1955) 1-7, doi: 10.4153/CJM-1955-001-4. | Zbl 0064.17901

[007] [8] T. Łuczak, R(Cₙ,Cₙ,Cₙ) ≤ (4+o(1))n, J. Combin. Theory (B) 75 (1999) 174-187.

[008] [9] S.P. Radziszowski, Small Ramsey numbers, Electronic J. Combin. Dynamic Survey 1, revision #9, July 2002, http://www.combinatorics.org/. | Zbl 0953.05048

[009] [10] P. Rowlison and Y. Yang, On the third Ramsey numbers of graphs with five edges, J. Combin. Math. and Combin. Comp. 11 (1992) 213-222. | Zbl 0756.05078

[010] [11] P. Rowlison and Y. Yang, On Graphs without 6-cycles and related Ramsey numbers, Utilitas Mathematica 44 (1993) 192-196. | Zbl 0789.05070

[011] [12] D.R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc. 24 (1972) 739-755, doi: 10.1112/plms/s3-24.4.739. | Zbl 0233.05117