Planar Ramsey numbers
Izolda Gorgol
Discussiones Mathematicae Graph Theory, Tome 25 (2005), p. 45-50 / Harvested from The Polish Digital Mathematics Library

The planar Ramsey number PR(G,H) is defined as the smallest integer n for which any 2-colouring of edges of Kₙ with red and blue, where red edges induce a planar graph, leads to either a red copy of G, or a blue H. In this note we study the weak induced version of the planar Ramsey number in the case when the second graph is complete.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:270703
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1258,
     author = {Izolda Gorgol},
     title = {Planar Ramsey numbers},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {25},
     year = {2005},
     pages = {45-50},
     zbl = {1077.05063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1258}
}
Izolda Gorgol. Planar Ramsey numbers. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 45-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1258/

[000] [1] K. Appel and W. Haken, Every planar map is four colourable. Part I. Discharging, Illinois J. Math. 21 (1977) 429-490. | Zbl 0387.05009

[001] [2] K. Appel, W. Haken, and J. Koch, Every planar map is four colourable. Part II. Reducibility, Illinois J. Math. 21 (1977) 491-567. | Zbl 0387.05010

[002] [3] W. Deuber, A generalization of Ramsey's theorem, in: R. Rado, A. Hajnal and V. Sós, eds., Infinite and finite sets, vol. 10 (North-Holland, 1975) 323-332.

[003] [4] P. Erdős, A. Hajnal and L. Pósa, Strong embeddings of graphs into colored graphs, in: R. Rado, A. Hajnal and V. Sós, eds., Infinite and finite sets, vol. 10 (North-Holland, 1975) 585-595. | Zbl 0312.05123

[004] [5] I. Gorgol, A note on a triangle-free - complete graph induced Ramsey number, Discrete Math. 235 (2001) 159-163, doi: 10.1016/S0012-365X(00)00269-7. | Zbl 0978.05053

[005] [6] I. Gorgol, Planar and induced Ramsey numbers (Ph.D. thesis (in Polish), Adam Mickiewicz University Poznań, Poland, 2000) 51-57.

[006] [7] I. Gorgol and T. Łuczak, On induced Ramsey numbers, Discrete Math. 251 (2002) 87-96, doi: 10.1016/S0012-365X(01)00328-4. | Zbl 1004.05042

[007] [8] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1-7, doi: 10.4153/CJM-1955-001-4. | Zbl 0064.17901

[008] [9] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math. Natur. Reihe 8 (1958/1959) 109-120.

[009] [10] B. Grünbaum, Grötzsch's theorem on 3-colorings, Michigan Math. J. 10 (1963) 303-310. | Zbl 0115.40903

[010] [11] N. Robertson, D. Sanders, P.D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory (B) 70 (1997) 145-161, doi: 10.1006/jctb.1997.1750. | Zbl 0883.05056

[011] [12] V. Rödl, A generalization of Ramsey theorem (Ph.D. thesis, Charles University, Prague, Czech Republic, 1973) 211-220.

[012] [13] R. Steinberg and C.A. Tovey, Planar Ramsey number, J. Combin. Theory (B) 59 (1993) 288-296, doi: 10.1006/jctb.1993.1070. | Zbl 0794.05091

[013] [14] K. Walker, The analog of Ramsey numbers for planar graphs, Bull. London Math. Soc. 1 (1969) 187-190, doi: 10.1112/blms/1.2.187. | Zbl 0184.27705