In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number . If G ≠ C₅ is a connected graph of order n with minimum degree at least 2, then we show that and we characterize those graphs achieving equality.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1255, author = {Michael A. Henning}, title = {Graphs with large double domination numbers}, journal = {Discussiones Mathematicae Graph Theory}, volume = {25}, year = {2005}, pages = {13-28}, zbl = {1073.05050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1255} }
Michael A. Henning. Graphs with large double domination numbers. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 13-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1255/
[000] [1] M. Blidia, M. Chellali, and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, submitted for publication. | Zbl 1100.05068
[001] [2] M. Blidia, M. Chellali, T.W. Haynes and M.A. Henning, Independent and double domination in trees, Utilitas Math., to appear. | Zbl 1110.05074
[002] [3] M. Chellali and T.W. Haynes, Paired and double domination in graphs, Utilitas Math., to appear. | Zbl 1069.05058
[003] [4] J. Harant and M.A Henning, On double domination in graphs, Discuss. Math. Graph Theory, to appear, doi: 10.7151/dmgt.1256.
[004] [5] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213. | Zbl 0993.05104
[005] [6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[006] [7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). | Zbl 0883.00011
[007] [8] C.S. Liao and G.J. Chang, Algorithmic aspects of k-tuple domination in graphs, Taiwanese J. Math. 6 (2002) 415-420. | Zbl 1047.05032
[008] [9] C.S. Liao and G.J. Chang, k-tuple domination in graphs, Information Processing Letters 87 (2003) 45-50, doi: 10.1016/S0020-0190(03)00233-3.