For a finite undirected graph G on n vertices two continuous optimization problems taken over the n-dimensional cube are presented and it is proved that their optimum values equal the domination number γ of G. An efficient approximation method is developed and known upper bounds on γ are slightly improved.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1254, author = {Frank G\"oring and Jochen Harant}, title = {On domination in graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {25}, year = {2005}, pages = {7-12}, zbl = {1077.05075}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1254} }
Frank Göring; Jochen Harant. On domination in graphs. Discussiones Mathematicae Graph Theory, Tome 25 (2005) pp. 7-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1254/
[000] [1] Y. Caro, New results on the independence number (Technical Report, Tel-Aviv University, 1979).
[001] [2] Y. Caro and Zs. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107, doi: 10.1002/jgt.3190150110.
[002] [3] R. Diestel, Graph Theory, Graduate Texts in Mathematics (Springer, 1997).
[003] [4] N. Alon, J.H. Spencer and P. Erdös, The Probabilistic Method (John Wiley and Sons, Inc. 1992), page 6.
[004] [5] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979). | Zbl 0411.68039
[005] [6] J. Harant, Some news about the independence number of a graph, Discuss. Math. Graph Theory 20 (2000) 71-79, doi: 10.7151/dmgt.1107. | Zbl 0971.05058
[006] [7] J. Harant, A. Pruchnewski and M. Voigt, On dominating sets and independent sets of graphs, Combinatorics, Probability and Computing 8 (1999) 547-553, doi: 10.1017/S0963548399004034. | Zbl 0959.05080
[007] [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, N.Y., 1998), page 52. | Zbl 0890.05002
[008] [9] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).