The Erdős-Faber-Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1252, author = {Lucien Haddad and Claude Tardif}, title = {A clone-theoretic formulation of the Erdos-Faber-Lov\'asz conjecture}, journal = {Discussiones Mathematicae Graph Theory}, volume = {24}, year = {2004}, pages = {545-549}, zbl = {1065.05040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1252} }
Lucien Haddad; Claude Tardif. A clone-theoretic formulation of the Erdos-Faber-Lovász conjecture. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 545-549. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1252/
[000] [1] P. Erdős, On the Combinatorial problems which I would most like to see solved, Combinatorica 1 (1981) 25-42, doi: 10.1007/BF02579174. | Zbl 0486.05001
[001] [2] L. Haddad, Le treillis des clones partiels sur un univers fini et ses coatomes (Ph, D. thesis, Université de Montréal, 1986).
[002] [3] L. Haddad and I.G. Rosenberg, Critère général de complétude pour les algèbres partielles finies, C.R. Acad. Sci. Paris, tome 304, Série I, 17 (1987) 507-509. | Zbl 0617.08008
[003] [4] L. Haddad, Maximal partial clones determined by quasi-diagonal relations, J. Inf. Process. Cybern. EIK 24 (1988) 7/8 355-366. | Zbl 0665.08004
[004] [5] L. Haddad and I.G. Rosenberg, Maximal partial clones determined by areflexive relations, Discrete Appl. Math. 24 (1989) 133-143, doi: 10.1016/0166-218X(92)90279-J. | Zbl 0695.08010
[005] [6] L. Haddad, I.G. Rosenberg and D. Schweigert, A maximal partial clone and a S upecki-type criterion, Acta Sci. Math. 54 (1990) 89-98. | Zbl 0717.08003
[006] [7] L. Haddad and I.G. Rosenberg, Completeness theory for finite partial algebras, Algebra Universalis 29 (1992) 378-401, doi: 10.1007/BF01212439. | Zbl 0771.08001
[007] [8] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience series in discrete mathematics and optimization, John Wiley & Sons Inc., 1995).
[008] [9] J. Kahn, Coloring nearly-disjoint hypergraphs with n+o(n) colors, J. Combin. Theory (A) 59 (1992) 31-39, doi: 10.1016/0097-3165(92)90096-D. | Zbl 0774.05073