Formulas for vertex eccentricity and radius for the n-fold tensor product of n arbitrary simple graphs are derived. The center of G is characterized as the union of n+1 vertex sets of form V₁×V₂×...×Vₙ, with .
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1247, author = {Sarah Bendall and Richard Hammack}, title = {Centers of n-fold tensor products of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {24}, year = {2004}, pages = {491-501}, zbl = {1077.05036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1247} }
Sarah Bendall; Richard Hammack. Centers of n-fold tensor products of graphs. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 491-501. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1247/
[000] [1] G. Abay-Asmerom and R. Hammack, Centers of tensor products of graphs, Ars Combinatoria 74 (2005). | Zbl 1081.05090
[001] [2] G. Chartrand and L. Lesniak, Graphs and Digraphs (Third Edition, Chapman & Hall/CRC, Boca Raton, FL, 2000). | Zbl 0890.05001
[002] [3] W. Imrich and S. Klavžar, Product Graphs; Structure and Recognition (Wiley Interscience Series in Discrete Mathematics and Optimization, New York, 2000). | Zbl 0963.05002
[003] [4] S.-R. Kim, Centers of a tensor composite graph, Congr. Numer. 81 (1991) 193-204. | Zbl 0765.05093
[004] [5] R.H. Lamprey and B.H. Barnes, Product graphs and their applications, Modelling and Simulation 5 (1974) 1119-1123.