Centers of n-fold tensor products of graphs
Sarah Bendall ; Richard Hammack
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 491-501 / Harvested from The Polish Digital Mathematics Library

Formulas for vertex eccentricity and radius for the n-fold tensor product G=i=1Gi of n arbitrary simple graphs Gi are derived. The center of G is characterized as the union of n+1 vertex sets of form V₁×V₂×...×Vₙ, with ViV(Gi).

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270399
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1247,
     author = {Sarah Bendall and Richard Hammack},
     title = {Centers of n-fold tensor products of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {491-501},
     zbl = {1077.05036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1247}
}
Sarah Bendall; Richard Hammack. Centers of n-fold tensor products of graphs. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 491-501. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1247/

[000] [1] G. Abay-Asmerom and R. Hammack, Centers of tensor products of graphs, Ars Combinatoria 74 (2005). | Zbl 1081.05090

[001] [2] G. Chartrand and L. Lesniak, Graphs and Digraphs (Third Edition, Chapman & Hall/CRC, Boca Raton, FL, 2000). | Zbl 0890.05001

[002] [3] W. Imrich and S. Klavžar, Product Graphs; Structure and Recognition (Wiley Interscience Series in Discrete Mathematics and Optimization, New York, 2000). | Zbl 0963.05002

[003] [4] S.-R. Kim, Centers of a tensor composite graph, Congr. Numer. 81 (1991) 193-204. | Zbl 0765.05093

[004] [5] R.H. Lamprey and B.H. Barnes, Product graphs and their applications, Modelling and Simulation 5 (1974) 1119-1123.